
ACM	Copyright	Notice	
© ACM 2014
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Published	in:	Proceedings	of	International	Software	Product	Line	
Conference	(SPLC'14),	September	2014	

“Behaviour Interactions Among Product-Line Features”

Cite as:

BibTex:

DOI: https://doi.org/10.1145/2648511.2648538

Pourya Shaker and Joanne M. Atlee. 2014. Behaviour interactions among product-line
features. In Proceedings of the 18th International Software Product Line Conference -
Volume 1 (SPLC '14), Stefania Gnesi, Patrick Heymans, Julia Rubin, Krzysztof Czarnecki,
Deepak Dhungana, and Alessandro Fantechi (Eds.), Vol. 1. ACM, New York, NY, USA, 242-
246.

@inproceedings{Shaker:2014:BIP:2648511.2648538,
 author = {Shaker, Pourya and Atlee, Joanne M.},
 title = {Behaviour Interactions Among Product-line Features},
 booktitle = {Proceedings of the 18th International Software Product Line Conference - Volume
1},
 series = {SPLC '14},
 year = {2014},
 pages = {242--246}
}

Behaviour Interactions Among Product-Line Features

Pourya Shaker
University of Waterloo

p2shaker@uwaterloo.ca

Joanne M. Atlee
University of Waterloo

jmatlee@uwaterloo.ca

ABSTRACT
A software product line (SPL) is often constructed as a set
of features, such that individual products can be assembled
from a set of common features and a selection of optional
features. Although features are conceptualized, developed,
and evolved as separate concerns, it is often the case that,
in practice, they interfere with each other – called a feature
interaction. In this paper, we precisely define what it means
for one feature to have a behaviour interaction with another
feature, where the behaviour of one feature is affected by
the presence of another feature. Specifically, we use a form
of bisimilarity to define when the behaviour of a feature in
isolation differs from its behaviour in the presence of an in-
teracting feature. We also consider the case where features
are modelled in a language that allows the specification of
intended interactions, and we adapt our use of bisimilarity
to provide a formal definition for unintended behaviour in-
teractions.

Categories and Subject Descriptors
D.2 [Software Engineering]: Miscellaneous

Keywords
feature interactions, product lines, bisimulation

1. INTRODUCTION
Software product-line engineering (SPLE) is an increas-

ingly popular approach to software development in which
processes and practices are geared towards creating and
managing a family of related products (e.g., smart phones,
automobiles). Variability among products is characterized
in terms of features, where a feature is a unit of functionality
or added value. A software product line (SPL) includes a
repository of mandatory and optional features, and individ-
ual products are derived by selecting among and integrating
features from this feature set. The downside of SPLE is that,
although features are conceptualized, developed, managed,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC ’14 Florence, Italy
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

and evolved as separate concerns, they often interfere with
each other. In general, a feature interaction occurs whenever
features influence one another in determining the overall sys-
tem behaviour [17]. Feature interactions can manifest them-
selves in different ways. In the simplest cases, the actions
of interacting features may conflict with each other or may
violate a desired global invariant. For example, automotive
features Cruise Control and Anti-lock Braking System may
issue conflicting actions over the automobile’s acceleration.
Most of the early work on detecting feature interactions fo-
cused on interactions that manifest themselves as logical in-
consistencies, such as conflicts, nondeterminism, deadlock,
invariant violation, or satisfiability [4, 10, 7, 9, 14].

We are interested in the more enigmatic class of behaviour
interactions, which are representative of how feature inter-
actions result in emergent behaviours that cannot be at-
tributed to any of the participating features. Specifically, a
feature is developed and verified to be correct in isolation,
but is found to behave differently when combined with other
features. In this paper, we provide a precise definition of
a behaviour interaction in terms of a violation of bisimilar-
ity [13] between the behaviours of a feature in isolation and
the behaviours of the feature when integrated with another
(interacting) feature.

Some feature interactions are by design. For example, ad-
vanced Cruise Control features in automotive software inten-
tionally override the behaviours of basic Cruise Control. A
key complaint of feature-interaction definitions is that they
do not distinguish between intended and unintended interac-
tions. Analyses that use such definitions report a potentially
large mix of intended and unintended interactions, leaving
the user to sift through the reports looking for the subset of
interactions that need to be addressed. As a second contri-
bution, we provide a second definition of behaviour interac-
tion that tolerates intended interactions: feature behaviour
models specify intended interactions, and the definition of
bisimilarity is weakened to admit (specified) intended inter-
actions and reject unintended interactions. To our knowl-
edge, the definition of feature interaction presented in this
paper is the first definition that distinguishes between in-
tended and unintended behaviour interactions.

The rest of this paper is organized as follows. Section 2
describes feature and SPL behaviour models. In Section 3,
we present our use of bisimilarity to define general behaviour
interactions, and Section 4 presents our amended definition
that accommodates intended interactions. Section 5 states
possible steps for applying our definitions in practice. Sec-
tion 6 discusses related work, and we conclude in Section 7.

2. BEHAVIOUR MODEL

transition
priorities:
C{t} > A{t1}

A{t2}: e2

B{t}: e2

C{t}: e1 [present(C)]

A{t1}: e1 / !e2

B{s}
A{s2}A{s1}

Figure 1: Behaviour model for an SPL ExSPL com-
prised of features A (black), B (blue) and C (red).

In this paper, the behaviours of features are specified as
state machines and state-machine fragments. As a pedagogi-
cal example, Figure 1 shows the behaviour model for an SPL
ExSPL with two mandatory features A and B and one op-
tional feature C. We show only the SPL model that results
from composing features A, B, and C. However, originally,
features A and B are modelled as state machines and feature
C is modelled as a fragment that extends feature A.

The states and transitions of a state machine have qual-
ified names of the form F{n}, which specify the feature F
to which a state or transition pertains. A state-machine
transition has a label of the form F{t} : te [gc] / a1, · · · , an

where t is the name of the transition, te is a triggering event,
gc is an optional guard condition, and a1 · · · an are concur-
rent actions. An action is of the form !e and specifies the
generation of an event e.

The purpose of a new feature may (in part) be to modify
the behaviours of an existing feature. In other words, a
new feature can have intended interactions with an existing
feature. We model a feature Y ’s intended interaction with
a feature X as follows:

• Transition priorities: feature Y introduces a transition
Y {t} that takes priority over a transition X{t} of feature
X. The transition priority is denoted as Y {t} > X{t}.
• Causing or preventing state changes: feature Y introduces

a transition that intentionally increases or decreases the
conditions under which a feature X’s state X{s} is en-
tered or exited. If a Y transition enters (or exits) state
X{s}, then the transitions of X that are enabled by state
X{s} will execute under more (or fewer) conditions. If
a Y transition takes priority over a transition that enters
(or exits) state X{s}, then the transitions of X that are
enabled by state X{s} will execute under fewer (or more)
conditions.

In the example of Figure 1, feature C has an intended in-
teraction with feature A, which as modelled as follows: C’s
transition C{t} takes priority over (eliminates) A’s transi-
tion A{t1}. In doing so, C{t} reduces the conditions under
which feature A reaches state A{s2} and prevents transition
A{t2} from ever executing.

The models of individual feature behaviours are composed
into an SPL behaviour model: an integrated state-machine
model representing the behaviours of all products of an SPL.
In an SPL behaviour model, each transition of an optional
feature F is guarded by a presence condition present(F).
The feature configuration of a product specifies which op-
tional features are present in a product; if a feature is
present, then its presence condition in the SPL model is
true, which means that the feature’s states and transitions
are part of the product’s behaviours.

Ø
S1

AB

states: A{s1}, B{s}
events: Ø

S2
AB

states: A{s1}, B{s}
events: e1

A{t1}
S3

AB

states: A{s2}, B{s}
events: e2

A{t2}, B{t}
[m]AB

Ø

S1
AB +C

states: A{s1}, B{s}
events: Ø

S2
AB +C

states: A{s1}, B{s}
events: e2

C{t}
[m]AB +C

Figure 2: [m]AB and [m]AB+C (initial states are de-
noted by a short incoming arrow)

The execution semantics of an SPL behaviour model m is
given by the set of possible executions of all possible prod-
ucts derived by the SPL. The executions are represented by
a a state-transition system [m]. Each state of [m] consists
of the set of executing machines and their current states,
and the set of events to be processed by the machines in
the next execution step. Each transition of [m] corresponds
to a single execution step of the set of executing machines,
and is labeled with the machines’ transitions that execute
in that step.

Behaviour interactions are not limited to features in the
same product. They could be between features in different
products operating in a shared environment (e.g., automo-
tive features in two vehicles). Thus, we consider the exe-
cution semantics of a product configuration P comprising a
set of SPL products, each with its own feature configura-
tion. By extension, the executions of P are represented by a
state-transition system [m]P . Each state of [m]P consists
of the execution states of all the machines that make up the
products in P. Each transition in [m]P is labelled with all
of the machines’ transitions in that execution step. From
P’s executions, we use projection to extract the behaviours

of a particular feature F . Projection [m]P|F represents F ’s

behaviours in [m]P .
Example 1: Figure 2 shows the state-transition systems

for two product configurations of ExSPL: the product con-
figuration AB comprises a single product with features A
and B, and the product configuration AB + C results from
adding feature C to the product in AB. [m]AB executes
transition A{t1} in response to an environment-generated
event e1, and then executes transitions A{t2} and B{t1}
in response to event e2 generated by A{t1}. In contrast,

[m]AB+C executes transition C{t}, instead of A{t1}, in re-
sponse to the environment event e1; A{t2} and B{t1} no
longer execute due to the absence of event e2. The projec-

tion [m]AB|A replaces the label of each [m]AB transition
with the subset of A transitions in the label. For example,
the transition label A{t2}, B{t} in [m]AB is replaced with

the label A{t2} in [m]AB|A. Other projections are obtained
in a similar manner.

3. BEHAVIOUR INTERACTIONS
The features of a product, or the features of different prod-

ucts, can modify one another’s behaviours. A feature Y
modifies the behaviours of another feature X by inhibiting or
triggering X’s behaviours. When Y modifies the behaviours
of X, we say that Y has a behaviour interaction with X.

Behaviour interactions manifest themselves as follows.
Let P be a minimal product configuration (set of products)

that includes feature X (and all features that feature X de-
pends on). Suppose that a feature Y is added to some prod-
uct in P, resulting in the extended product configuration
P + Y1. To determine whether Y has a behaviour interac-
tion with X, we compare the executions of P and P + Y.
Informally, a behaviour interaction is said to occur if X’s be-
haviours in the executions of P + Y are different from X’s
behaviours in the executions of P.

The comparison of the executions of P and P + Y is for-

mally expressed as a bisimilarity check between [m]P|X and

[m]P+Y|X . Whether [m]P|X and [m]P+Y|X are bisimilar is
determined by playing a matching game. The game starts
with the transition systems in their initial states. In each
round of the game, either transition system can take a tran-
sition, hereafter called a move. For all possible next moves
in one system, there must exist a matching move in the
other system, and vice versa. Recall that a move represents
the concurrent execution of a set of machine transitions.
Two moves match if the transitions that execute in the two

moves are equal. In Example 1, the move s
AB|A
1

∅−→ s
AB|A
2

in [m]AB|A matches the move s
AB+C|A
1

∅−→ s
AB+C|A
2 in

[m]AB+C|A since the sets of A transitions executed in the
two moves are the same (are both empty).

If the two transition systems can match each other’s moves
in all rounds of the matching game then the same is a win-
ning game and the state-transition systems are bisimilar. A
bisimulation relation relates pairs of states, one from each
state-transition system, in each round of a winning game.

Definition 1. [m]P|X is bisimilar to [m]P+Y|X if and only
if there exists a bisimulation relation BSR between the
states of [m]P|X and [m]P+Y|X that specifies a winning
game:

1. The pair of initial states of [m]P|X and [m]P+Y|X are
related by BSR.

2. Every move of [m]P|X is matched by a move of

[m]P+Y|X . That is, if states sP|X and s
P+Y|X are related

by BSR, then (a) every move out of sP|X is matched by

a move out of sP+Y|X , and (b) the destination states of
the matching moves are also related by BSR.

3. Every move of [m]P+Y|X is matched by a move of

[m]P|X . That is, if states s
P|X and s

P+Y|X are related

by BSR, then (a) every move out of sP+Y|X is matched

by a move out of sP|X , and (b) the destination states of
the matching moves are also related by BSR.

A behaviour interaction, then, can be defined in terms of a
violation of bisimilarity.

Definition 2. Let m be an SPL behaviour model, P be
a product configuration, and P + Y be the product config-
uration that results from adding feature Y to P. Y has a
behaviour interaction with a feature X in P if and only if

[m]P|X is not bisimilar to [m]P+Y|X .

Consider the product configurations AB and AB + C from
Example 1. The following examples determine whether the
new feature C has behaviour interactions with the existing

1Feature Y could be added to the product in P that includes
feature X or could be added to another product in P.

features2 by checking bisimilarity between projections over
the transitions systems [m]AB and [m]AB+C in Figure 2.

Example 2: C has a behaviour interaction with A be-

cause [m]AB|A is not bisimilar to [m]AB+C|A. Starting in

the initial states s
AB|A
1 and s

AB+C|A
1 , [m]AB+C|A can match

[m]AB|A’s move of executing no A transitions. However, in

the resulting states s
AB|A
2 and s

AB+C|A
2 , [m]AB+C|A cannot

match [m]AB|A’s move of executing transition A{t1}.
Example 3: C has a behaviour interaction with B be-

cause [m]AB|B is not bisimilar to [m]AB+C|B . Starting in

the initial states s
AB|B
1 and s

AB+C|B
1 , [m]AB+C|B can match

[m]AB|B ’s move of executing no B transitions. The same

is true in the resulting states s
AB|B
2 and s

AB+C|B
2 . How-

ever, in the following round in states s
AB|B
3 and s

AB+C|B
1 ,

[m]AB+C|B cannot match [m]AB|B ’s move of executing tran-
sition B{t}.

C’s behaviour interaction with A is intended: in
[m]AB+C|A’s move, transition C{t} takes priority over tran-
sition A{t1}. Whereas, C’s behaviour interaction with B

is unintended: in [m]AB+C|B ’s execution, transition C{t}
takes priority over transition A{t1}; this unintentionally dis-

ables transition B{t} in [m]AB+C|B ’s next round move, be-
cause B{t} can be triggered only by A{t1}’s generation of
event e2. Hence, the general definition of behaviour inter-
actions includes C’s intended interaction with A and C’s
unintended interaction with B.

4. UNINTENDED BEHAVIOUR INTERAC-
TIONS

In the general definition given in Section 3, an added fea-
ture Y has a behaviour interaction with an existing feature
X in product configuration P if the state-transition sys-
tems [m]P and [m]P+Y cannot match one another’s moves
in all rounds of the matching game. However, two associ-
ated moves may fail to match by design because there are
intended interactions. An intended interaction by feature
Y will trigger or inhibit the transitions of X in [m]P+Y ’s
moves. Such interactions affect not only X’s immediate be-
haviours, but can have long lasting effects if, because of a
triggered or inhibited transition, a feature is in a different
state and thus has different future behaviours. In this work,
we presume that if an intended interaction between features
Y and X result in different future behaviours in X, then the
resulting feature behaviours are also intended – although
this presumption may be optimistic. Thus, there are two
classes of intended interactions to consider:

1. Intended match: A transition X{t} in the current

[m]P+Y move is inhibited by a higher-priority transition
of Y . In order to ignore such intended interactions, we
weaken the notion of a match between moves to permit
differences caused by transition priorities.

2. Weakened winning game: A transition X{t} of X is in-

hibited in a future [m]P+Y move, because a transition

of Y in the current [m]P+Y move intentionally triggers
the exit or prevents the entry of an X state on which

2In our example, the product configuration that includes
both A and B is a minimal product configuration because
A and B are both mandatory features.

X{t}’s enabledness depends. If the Y transition inten-
tionally triggers the exit or prevents the entry of the X
state, then transition X{t} may appear in a future [m]P

move, but not appear in any associated future [m]P+Y

move. Analogously, if the Y transition intentionally trig-
gers the entry or prevents the exit of the X state, the
transition X{t} may appear in a future [m]P+Y move

but not in any associated [m]P move. In order to ig-
nore such intended interactions, we weaken the notion of
a winning game as follows: if in the course of a matching
game [m]P+Y performs a Y transition that intentionally
triggers or inhibits the entry or exit of an X state, then
the game is won. Considering these games to be won is
equivalent to tolerating any future mismatches between
the moves of [m]P and [m]P+Y .

We now provide a new definition for bisimilarity, which re-
vises clauses 2(a) and 3(a) in Definition 1 to use the notion

of an intended match between the moves of [m]P|X and

[m]P+Y|X as defined above; and revises clauses 2(b) and
3(b) to encode the weakened notion of a winning game as
described above. The revised clauses are shown in red.

Definition 3. [m]P|X is intentionally bisimilar to [m]P+Y

if and only if there exists a intentional-bisimulation relation

BSR between the states of [m]P|X and [m]P+Y|X such that:

1. The pair of initial states of [m]P|X and [m]P+Y|X are
related by BSR.

2. Every move of [m]P|X is matched by a move of

[m]P+Y|X : if states s
P|X and s

P+Y|X are related by

BSR, then (a) every move out of s
P|X is intentionally

matched by a move out of sP+Y|X ; and (b) if the move

of [m]P+Y|X includes no Y transition that intentionally
triggers or inhibits the entry or exit of an X state, then
the destination states of the matching moves are also re-
lated by BSR.

3. Every move of [m]P+Y|X is matched by a move of

[m]P|X : if states s
P|X and s

P+Y|X are related by

BSR, then (a) every move out of s
P+Y|X is intention-

ally matched by a move out of sP|X ; and (b) if the move

of [m]P+Y|X includes no Y transition that intentionally
triggers or inhibits the entry or exit of an X state, then
the destination states of the matching moves are also re-
lated by BSR.

We can now formally define unintended behaviour interac-
tions, in terms of a violation of bisimilarity as defined above.

Definition 4. Let m be an SPL behaviour model, P be a
product configuration, and P + Y be the product configura-
tion that results from adding feature Y to P. Y has an un-
intended behaviour interaction with a feature X in P if and
only if [m]P|X is not intentionally bisimilar to [m]P+Y|X .

Consider the product configurations AB and AB + C from
Example 1. The following examples revisit the question of
whether C has behaviour interactions with A and B, using
the revised definition of bisimilarity.

Example 4: C’s behaviour interaction with A in Example

2 is tolerated as being intended because [m]AB|A is inten-

tionally bisimilar to [m]AB+C|A: Recall from Example 2 that

in the third round of the game, [m]AB+C|A’s move of execut-

ing transition C{t} does not match [m]AB|A’s move of ex-
ecuting transition A{t1}. However, the moves intentionally
match because C{t} takes priority over A{t1}. Furthermore,
since the transition C{t} prevents entry to state A{s2} (the
destination state of the preempted transition A{t1}), future
mismatches are tolerated and the matching game is won.

Example 5: C has a behaviour interaction with B be-

cause [m]AB|B is not bisimilar to [m]AB+C|B . Recall from
Example 3 that in the third round of the game, the two
transition systems cannot match one another’s moves. How-
ever, the mismatch does not occur because of constructs for
modelling intended interactions. As explained in Example

3, the mismatch occurs because [m]AB+C|B ’s previous move
preempts the generation of event e2 that would trigger tran-
sition B{t}.

Hence, the revised definition of behaviour interactions tol-
erates C’s intended interaction with A and reports C’s un-
intended interaction with B.

5. ROADMAP TO PRACTICE
This section proposes some steps for putting our defini-

tions of behaviour interactions to practical use.

• To simplify presentation, the definitions in this paper are
given for canonical state-machine models. Details about
how these definitions apply to a richer SPL modelling lan-
guage (i.e., one that includes a rich data model, and richer
constructs for expressing actions, events, and intended in-
teractions in state machines), including a formalization
of the language’s execution semantics and corresponding
bisimulation relations are given in [16]. [16] also includes a
formalization of other prominent feature-interaction types
for state-machine models, such as conflicting actions, non-
determinism, deadlock, and looping. However, behaviour
interactions are more general and subsume these feature-
interaction types.

• Our behaviour interaction definitions could form the basis
for an analysis technique that detects such interactions. A
natural choice for analysis would be to adapt well-known
algorithms for checking bisimilarity [1] – to incorporate
the notion of an intended match and the weakened notion
of a winning game, so that the analysis reports only un-
intended interactions. A technical challenge is that the
size of the state space can grow quickly with the size
of the product configurations being analyzed as well as
the (modelling-language dependent) size of auxiliary data.
One approach to address this challenge would be to place
bounds on the product-configuration and data sizes, or on
the length of the executions considered in analysis; how-
ever, the impact of such bounds on the effectiveness of
analysis need to be evaluated.

• A systematic process should be developed for applying
such an analysis to the features of an SPL, such that cov-
erage of behaviour interactions is guaranteed. One ap-
proach is to check behaviour interactions between each
pair X and Y of features by comparing the executions of
a minimal product configuration that includes X to that
obtained by adding Y this product configuration. How-
ever, other work shows that pairwise feature-interaction
analysis is not complete [3]. One idea is to extend the
minimal product configuration of X with other features

that are suspected to cause feature interactions in combi-
nation with X and Y , for example, because they operate
on the same environment phenomena.

• The analysis and process developed for detecting be-
haviour interactions should be evaluated using real-world
cases studies. Evaluation should focus both on computa-
tional efficiency as well as on the utility of analysis results
(e.g., number of false positives). Evaluation may iden-
tify avenues for optimizing the process and analysis, to
improve scalability and the utility of results.

6. RELATED WORK
There is extensive work on formally defining how spe-

cific classes of unintended feature interactions manifest
themselves in behavioural models, such as logical inconsis-
tency [4], the violation of correctness properties [8], con-
flicting actions [9], nondeterminism [12], and deadlock [10].
LaPorta et al. [11] provide a formal definition of feature in-
teractions based on trace equivalence that is similar to our
notion of behaviour interactions: a set of features F are said
to interact with another set of features E if the projected set
of execution traces of F and F ∪E differ. Broy [5] defines a
theory for specifying a system’s interface behaviour (possi-
ble streams of IO messages) as an integrated state machine,
where the behaviours of individual features are derived by
projection. Similar to the work by LaPorta et al., the in-
dependence (or lack of behaviour interactions) between fea-
tures is formalized as a form of trace equivalence. We chose
bisimilarity over trace equivalence to define feature interac-
tions, because bisimilarity is more sensitive to nondetermin-
ism (possible both within and between features) than trace
equivalence is. To our knowledge, there is no general defi-
nition of behaviour interactions that distinguishes between
intended and unintended interactions.

The aspect-oriented software development community has
also studied interactions among separate concerns developed
as aspects. Typical definitions given for aspect interactions
are aspects advising overlapping parts of a base program or
other aspects [6] and aspects violating correctness proper-
ties of other aspects [2]. However, such definitions do not
correspond to the general case of behaviour interactions. In
a more closely related approach, Rinard et al. [15] classify
interactions among aspects and the base program based on
their direct and indirect effects on one another’s control flow.
Our approach differs from that of Rinard et al. in the arte-
fact over which interactions are defined (state-machine mod-
els vs. code) and the technique used to define interactions
(bisimilarity vs. pointer and escape analysis).

7. CONCLUSION AND FUTURE WORK
We have defined how a key class of feature interactions,

called behaviour interactions, manifest themselves in be-
haviour models of SPL requirements. Informally, a feature
Y has a behaviour interaction with a feature X, in the same
or in a different product, if Y modifies (e.g., triggers, blocks)
X’s behaviours. The paper’s contributions are (1) a defini-
tion of behaviour interaction in terms a difference between
the projection of a feature X in some product configura-
tion and X’s projection in the same product configuration
enhanced with feature Y ; and (2) a formal definition of un-
intended behaviour interaction in terms of the violation of
intentional-bisimilarity. The latter definition could be the

basis for an analysis that reports only unintended interac-
tions. For future work, we plan to automate the detection
of behaviour interactions.

8. ACKNOWLEDGMENTS
We would like to thank Andrzej W ↪asowski for his early

feedback on this work.

9. REFERENCES
[1] L. Aceto, A. Ingolfsdottir, and J. Srba. Advanced

Topics in Bisimulation and Coinduction, chapter The
Algorithmics of Bisimilarity, pages 100–172. 2011.

[2] Z. Altahat and T. Elrad. Detection and verification of
semantic interaction in AOSD. In ITNG, pages
807–812, 2009.

[3] S. Apel, S. S. Kolesnikov, N. Siegmund, C. Kästner,
and B. Garvin. Exploring feature interactions in the
wild: the new feature-interaction challenge. In
FOSD@GPCE, pages 1–8, 2013.

[4] J. Blom, B. Jonsson, and L. Kempe. Using temporal
logic for modular specification of telephone services. In
FIW, pages 197–216, 1994.

[5] M. Broy. Multifunctional software systems: Structured
modeling and specification of functional requirements.
Sci. Comput. Program., 75(12):1193–1214, 2010.

[6] R. Douence, P. Fradet, and M. Südholt. A framework
for the detection and resolution of aspect interactions.
In GPCE, pages 173–188, 2002.

[7] A. P. Felty and K. S. Namjoshi. Feature specification
and automated conflict detection. TOSEM,
12(1):3–27, 2003.

[8] A. Gammelgaard and J. Kristensen. Interaction
detection, a logical approach. In Feature Interactions
in Telecommunications Systems, pages 178–196, 1994.

[9] R. J. Hall. Feature combination and interaction
detection via foreground/background models. Comput.
Netw., 32(4):449–469, 2000.

[10] A. Khoumsi. Detection and resolution of interactions
between services of telephone networks. In FIW, pages
78–92, 1997.

[11] T. F. LaPorta, D. Lee, Y.-J. Lin, and M. Yannakakis.
Protocol feature interactions. In FORTE, volume 135,
pages 59–74, 1998.

[12] M. Nakamura, Y. Kakuda, and T. Kikuno. Feature
interaction detection using permutation symmetry. In
FIW, pages 187–201, 1998.

[13] D. Park. Concurrency and automata on infinite
sequences. In Theoretical Computer Science, pages
167–183, 1981.

[14] M. Plath and M. Ryan. Feature integration using a
feature construct. Sci. Comput. Program.,
41(1):53–84, 2001.

[15] M. Rinard, A. Salcianu, and S. Bugrara. A
classification system and analysis for aspect-oriented
programs. In FSE, pages 147–158, 2004.

[16] P. Shaker. A feature-oriented modelling language and
a feature-interaction taxonomy for product-line
requirements. Ph.D. Thesis, 2013.

[17] P. Zave. Requirements for evolving systems: a
telecommunications perspective. In RE, pages 2–9,
2001.

	SPLC14.Copyright
	SPLC14

