
IEEE	Copyright	Notice	
Copyright	(c)	2012	IEEE	
Personal	use	of	this	material	is	permitted.	Permission	from	IEEE	must	be	obtained	for	all	
other	uses,	in	any	current	or	future	media,	including	reprinting/republishing	this	material	
for	advertising	or	promotional	purposes,	creating	new	collective	works,	for	resale	or	
redistribution	to	servers	or	lists,	or	reuse	of	any	copyrighted	component	of	this	work	in	
other	works.	

Published	in:	Proceedings	of	the	International	Requirements	Engineering	
Conference	(RE'12),	September	2012	

“A Feature-Oriented Requirements Modelling Language”

Cite as:

BibTex:

DOI: https://doi.org/10.1109/RE.2012.6345799

P.	Shaker,	J.	M.	Atlee	and	S.	Wang,	"A	feature-oriented	requirements	modelling	
language,"	2012	20th	IEEE	International	Requirements	Engineering	Conference	
(RE),	Chicago,	IL,	2012,	pp.	151-160.	
	

@INPROCEEDINGS{6345799,		
author={P.	{Shaker}	and	J.	M.	{Atlee}	and	S.	{Wang}},		
booktitle={2012	20th	IEEE	International	Requirements	Engineering	
Conference	(RE)},		
title={A	feature-oriented	requirements	modelling	language},		
year={2012},		
pages={151-160},		
month={Sep.},}	

A Feature-Oriented Requirements Modelling Language

Pourya Shaker and Joanne M. Atlee
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

{p2shaker, jmatlee}@uwaterloo.ca

Shige Wang
General Motors Global R & D

30500 Mound Road, Warren, MI 48090
shige.wang@gm.com

Abstract—In this paper, we present a feature-oriented re-
quirements modelling language (FORML) for modelling the
behavioural requirements of a software product line. FORML
aims to support feature modularity and precise requirements
modelling, and to ease the task of adding new features to a set
of existing requirements. In particular, FORML decomposes a
product line’s requirements into feature modules, and provides
language support for specifying tightly-coupled features as
model fragments that extend and override existing feature
modules. We discuss how decisions in the design of FORML
affect the evolvability of requirements models, and explicate the
specification of intended interactions among related features.
We applied FORML to the specification of two feature sets,
automotive and telephony, and we discuss how well the case
studies exercised the language and how the requirements
models evolved over the course of the case studies.

Keywords-Requirements modelling, software product lines

I. INTRODUCTION

A software system is often thought of in terms of its
constituent features, where each feature is a “coherent and
identifiable bundle of system functionality” [1]. Moreover,
feature modularity eases system development and evolution
because features can be developed in isolation, in parallel,
and by third-party vendors. Feature orientation is particularly
relevant in the context of software product lines (SPLs),
where families of similar products are understood, con-
structed, managed, and evolved in terms of their features.
In fact, there is a feature-oriented software development
(FOSD) [2] paradigm that advocates that features be treated
as first-class entities throughout the lifecycle of a software
system.

The downside of feature orientation is that, when deriving
a product from a selection of features, engineers must
consider how the features interact. Two features interact
with each other when “one feature affects the operation of
[the other] feature” [3]. Some features interact by design:
for example, advanced cruise-control features are designed
to supersede basic cruise control. Other features interact
by accident as a consequence of operating in a shared
context [4][5]. For example, a number of automotive features
regulate brake-pressure fluid and, if uncoordinated, may
perform conflicting actions. To be safe, the engineer needs
to be able to understand and reason about the behaviours of

features in combination.
We are investigating requirements modelling and analysis

in the feature-oriented development of a SPL. In this paper,
we focus on the modelling task. In future work, we will
consider analyses of features to detect unintended feature
interactions and explore the space of requirements of a SPL’s
products.

We propose a feature-oriented requirements modelling
language (FORML), the goals of which are as follows:

Use existing standards and best practices: First, in accor-
dance with Jackson and Zave’s widely-accepted reference
model for RE [6], the model of the requirements should
be separate from the model of the problem world. Second,
FORML should make use of standard software-engineering
notations (e.g., the UML, feature models), to ease adoption
by practitioners.

Feature modularity: Each feature should be modelled as
a separate feature module. This property eases the task of
tracing a feature to model(s) of its behavioural requirements,
and enables independent development of feature modules.

Ease of evolution: Ideally, the task of adding a new feature
to the requirements of a SPL should be additive, prompting
little to no changes to the existing feature modules.

Support for modelling differences: It should be possible to
express new features in terms of their differences from exist-
ing features – for example, as model fragments that extend
existing features’ models. Modelling a feature as a model
fragment focuses the modeller’s or reviewer’s attention on
the requirements being introduced by the fragment.

Explicit modelling of intended feature interactions: A
new feature’s requirements may include intended feature
interactions: that is, changes (e.g., removals or replacements)
to the behaviours of existing features. We advocate mod-
elling intended feature interactions explicitly, so that they
are more apparent to the modeller and the reviewer. This
information can also be used to direct feature analyses to
focus on detecting unintended interactions.

Commutative and associative composition: Some ap-
proaches (e.g., DFC [7] and AHEAD [8]) use the order of

composition to realize intended interactions, in that the loca-
tion of a feature in a composition determines what features it
overrides. In such techniques, intended interactions must be
implicitly inferred from the composition order, rather than
being explicitly specified. Worse, it means that additional
unintended interactions can emerge from the overriding
nature of the composition. As such, it may be necessary
to consider multiple feature orderings to find one that yields
desirable results – and the desired orderings may need to
be recomputed when new features are added. If instead the
composition operator is commutative and associative, the
order of composition does not matter and the order in which
the SPL evolves to include new features does not matter.

Precision: The language should be precise so that the
models are amenable to analyses.

Existing approaches for specifying the behavioural re-
quirements of features [9], [10], [11], [12], [13], [14] and
approaches that support feature modularity in behavioural
models [4], [7], [8], [15], [16], [17] fall short with respect
to one or more of the above goals: they all either lack
support for the modelling of intended interactions explicitly
or are sensitive to the order in which feature modules are
composed.

FORML overview and contributions: The contribution
of FORML is to combine and adapt the best practices
for modelling behavioural requirements with the feature
modularity of FOSD. A FORML model is decomposed into
two requirements views (see Figure 1):

• A world model is an ontology of concepts that de-
scribes the problem world of a SPL.

• A behaviour model is an extended finite state-machine
model that describes the requirements for a SPL. The
model’s inputs are events and conditions about world
phenomena (i.e., concepts and relationships in the
world model), and its outputs are actions over world
phenomena. A behaviour model is decomposed into
feature modules, which describe the requirements for
features of the SPL.

FORML is distinguished from existing RE and FOSD
approaches in the following ways:

• A FORML world model includes SPL and feature
concepts, which relate products and features to relevant
problem-world phenomena. A feature model specifies
the valid feature combinations of a SPL.

• FORML provides a systematic treatment for how new
features evolve a state-machine model of requirements,
with respect to added, removed, or replaced behaviours.

• FORML introduces language constructs for explicitly
modelling intended interactions in state-machine mod-
els of feature requirements.

• The composition of feature modules in FORML is
commutative and associative, while preserving intended

Figure 1. Overview of a FORML model

interactions.
The rest of this paper is organized as follows. Sections II

and III describe the components of a FORML model.
Section IV describes how features are composed together.
In Section V, we describe our experiences with applying
FORML to families of automotive and telephony features.
Section VI discusses related work in more detail, and we
conclude in Section VII.

II. FORML WORLD MODEL

A FORML world model is an ontology of the concepts in
the problem world (world for short) of a SPL. In FORML,
a problem is decomposed into features, and one could
think about each feature as having its own problem world.
However, to ensure a consistent ontology relevant to multiple
features, a FORML world model is an integrated model of
the features’ problem worlds.

As a running example, we use a SPL of automotive soft-
ware controllers, called AutoSoft, comprising the following
features:

• Basic driving service (BDS), which responds to com-
mands to change the car’s ignition state, acceleration,
and steering direction

• Cruise control (CC), which maintains the car’s speed
at a driver-specified cruising speed

• Headway control (HC), which keeps the car at a driver-
specified distance from road-objects ahead

Figure 2 presents an integrated world model of the three
AutoSoft features.

As in existing approaches to modelling a problem world
(e.g., KAOS [18] and Larman [19]), a FORML world model
is a UML-based concept model: A concept in the world
model represents a type of world phenomenon. A concept
instance, called an object, is characterized by a set of proper-
ties, called attributes. A concept can be abstract and can have
subtypes. There are special types of concepts; for example,
an association represents a type of relationship that can exist
among the instances of other concepts (e.g., automobiles
can have drivers), and compositions and aggregations are

BDS

«inputs»

IgniteOn()

IgniteOff()

Steer(value: Angle)

Accelerate(value: Int)

Decelerate(value: Int)

CC

cruiseSpeed: Int

goalAccel: Int

«inputs»

SetCruiseSpeed()

EnableCC()

DisableCC()

Accelerate(value: Int)

Decelerate(value: Int)

HC

headway: Int

«inputs»

SetHeadway(value: Int)

Lane

AutoSoftCar

ignition: {on, off}

steerDirection: Angle

AutoSoft

RoadObject

velocity: Vector

acceleration: Int

MapObject

position: Coord

shape: Shape

RoadSegment

speedLimit: Int

1..*

Driver
Drives

BDS

CC

AutoSoft

HC

feature model

Figure 2. The AutoSoft world model

special binary associations that represent strong and weak
whole-part relationships, respectively. The above constructs
are expressed as a UML class diagram. Looking again at
Figure 2, the AutoSoft world model includes RoadSegments,
which consist of one or more Lanes, and RoadObjects. A
special type of road object is an AutoSoftCar, which is a
vehicle (with a Driver) that incorporates AutoSoft products.

What distinguishes a FORML world model from existing
approaches is that it includes the following:

SPL and feature concepts: A SPL concept, distinguished
by a dashed border and a grey background (AutoSoft in
Figure 2), represents a SPL’s set of possible products. A SPL
instance is a product with a particular feature configuration
(i.e., set of features) represented by instances of the feature
concepts. A SPL concept has one or more associations,
which scope the world phenomena relevant to the SPL’s
products. For example, the scope of an AutoSoft product is
the containing AutoSoftCar and its surroundings. A feature
concept, distinguished by a dashed border (BDS, CC, and
HC in Figure 2), specifies feature phenomena that is intro-
duced by the SPL but is visible and possibly controllable by
the world. Feature phenomena are either communications to
or from a SPL product, or data shared between the product
and the world. Communications are modelled as messages
that are listed inside of relevant feature concepts (e.g.,
IgniteOn() is relevant to BDS). Feature data are modelled
as attributes or associations of the feature concept that first
introduces the data (e.g., cruiseSpeed is introduced by CC).
Feature phenomena are organized by feature to improve
traceability between features and their respective feature
phenomena. This organization eases the task of updating the
world model when a feature is removed from the SPL.

Feature model: A FORML world model includes a feature
model that constrains the valid feature configurations of a

SPL. FORML uses the original feature-model notation [20].
A feature model is depicted as a tree whose root is a SPL
concept and every other tree node is a feature concept.
A feature topped with a filled circle denotes a mandatory
feature, and a feature topped with an empty circle denotes
an optional feature. An optional feature can be present in a
product only if its parent feature is present in the product.
Hence, the AutoSoft feature model shown in the top-right
of Figure 2 specifies that an AutoSoft product must include
BDS, can optionally include CC, and if it has CC, it can
optionally include HC.

A. World States and World-State Constraints

A world model identifies a space of world states, each
representing a possible state of a SPL’s problem world. A
world state consists of a set of objects, their attribute values,
their associations, etc. Additional domain knowledge and
assumptions about the problem world may be specified as
constraints on the world model. A world-state constraint
restricts the space of possible world states defined by the
world model. A world-state transition constraint specifies
restrictions on consecutive world states; that is, it restricts
how the world state can change. Such constraints are written
as predicates in FORML’s language for expressions over
world states, described in Section II-B.

B. World-State Expressions

General world-state expressions: FORML has a language
for writing expressions over the objects, attribute values,
association links, etc. in a world state. This expression
language is based on Alloy [21] and OCL [22], which
provide widely-used operations over object models (e.g.,
navigation, filtering, queries). The grammar of Figure 3
shows the different types of FORML expressions. An ex-
pression is a parenthesized expression, set, predicate, integer,
or unspecified function or predicate (rule 1); the latter is
introduced to represent data logic or a constant value that is
left unspecified in a FORML model (rule 17). A set (rule
2) can be empty (‘none’) or it can be a collection of objects
(or values) in a world state (ID). A navigation expression
starts from a set of objects and derives a set of related
objects, links, or attribute values (rule 4). A set-selection
expression defines a subset in terms of members that satisfy
some predicate (rule 5). An if-then-else expression returns a
set based on the value of a predicate (rule 6). There are
operations on sets (e.g., union, cardinality, membership),
integers (addition, subtraction), booleans (e.g., negation,
conjunction, implication), and comparison operators (e.g.,
=, <). One can express predicates about the cardinality of a
set (i.e., that a set contains zero, zero or one, one, or some
elements) (rule 10). There are quantifiers for asserting that
some number of a set’s members satisfy a predicate (i.e.,
zero, zero or one, one, some, or all members) (rule 16). If
a FORML expression is over two consecutive before and

01 expr := ‘(’ expr ‘)’ | expr ‘@pre’ | set | pred | int | unspec
02 set := ‘none’ | ID | nav | select | cond | set set-op set
03 set-op := ‘+’ | ‘&’ | ‘-’
04 nav := set ‘.’ ID
05 select := set ‘[’ ID ‘|’ pred ‘]’
06 cond := ‘if’ pred ‘then’ set ‘else’ set
07 int := ‘#’ set | int int-op int
08 int-op := ‘+’ | ‘-’
09 pred := set-pred | logic | card-op set | quant | int int-comp int
10 card-op := ‘no’ | ‘lone’ | ‘one’ | ‘some’
11 int-comp := ‘=’ | ‘<>’ | ‘>’ | ‘<’ | ‘<=’ | ‘>=’
12 set-pred := set ’=’ set | set ’in’ set
13 logic := ‘not’ pred | pred logic-op pred
14 logic-op := ‘and’ | ‘or’ | ‘implies’ | ‘iff’
15 quant := quant-op ID ‘:’ ID ‘|’ pred
16 quant-op := ‘no’ | ‘lone’ | ‘one’ | ‘some’ | ‘all’
17 unspec := ID ‘()’ | ID ‘(’ expr-list ‘)’
18 expr-list := expr | expr ‘,’ expr-list

Figure 3. Syntax of FORML’s language for general world-state ex-
pressions: Non-terminal and terminal symbols are denoted with different
fonts (ID represents the name of a world-model element, variable, or
unspecified function/predicate). Literals are enclosed in single quotes. “|”
denotes choice.

after world states, then subexpressions with suffix @pre are
evaluated with respect to the before world state.

In addition, FORML introduces the following constructs
for expressing events and actions over world states.

World-change events (WCEs): A world-change event
(WCE) is a notification of a primitive change to the world
state, such as the addition or removal of an object, or a
change in the value of an object’s attribute. A WCE is
expressed in one of the following basic forms, where C is
a concept in the world model:

• C+(o) = object o of type C has just been added to the world
state.

• C-(o) = object o has just been removed from the world state.
• C.a∼(o) = o’s attribute a has just changed.

For example, Accelerate+(o) denotes the event of AutoSoft
receiving an accelerate command.
World-change actions (WCAs): A world-change action
(WCA) is an action performed by a product that effects
a primitive change to the world state. A WCA can be
expressed in one of the following basic forms, where C, A,
and M are a basic concept, an association, and a message
in the world model, respectively; and exp/expi and o/oj are
FORML expressions, where the latter expressions evaluate
to object sets.

• +C(a1 = exp1, ..., an = expn) creates a C object whose attributes
ai have values expi.

• +A(a1 = exp1, ..., an = expn, r1 = o1, ..., rm = om) creates an A
link that relates objects oj in roles rj, and whose link attributes
ai have values expi.

• !M(p1 = exp1, ..., pn = expn) creates an M message object
whose parameters pi have values expi.

• -o removes the objects o and their dependent links1.
• o.a := exp changes the value of o’s attribute a to value exp.

For example, c.ignition := on denotes the action of turning
on the ignition of an AutoSoftCar c.

1Note that object expression o may refer to a collection of objects (e.g.,
remove all the calls associated with a caller who has hung up).

on

waitAccelerate

t3: Accelerate+(o) /

a1: AutoSoftCar.acceleration := acceleration()

off

waitSteer

t5: Steer+(o) /

a1: AutoSoftCar.steerDirection := steerDirection()

acceleration

steering

t1: IgniteOn+(o) /

a1: AutoSoftCar.ignition := on

waitDecelerate

t4 > t3: Decelerate+(o) /

a1: AutoSoftCar.acceleration := deceleration()

deceleration

t2: IgniteOff+(o) /

a1: AutoSoftCar.ignition := off

SPL AutoSoft

feature BDS

feature-machine main

Figure 4. BDS feature module

III. FORML BEHAVIOUR MODEL

A FORML behaviour model is an operational specifica-
tion of the requirements of a SPL’s products. This specifica-
tion is decomposed into feature modules, where each feature
module specifies the requirements for a single feature of the
products.

Following the AHEAD model of FOSD [8], FORML
distinguishes between base features that constitute the initial
requirements of a SPL and new features that evolve the
SPL’s requirements over time. The requirements of a base
feature are expressed as one or more parallel state machines,
and those of a new feature are expressed as state machines,
or as state-machine fragments to be superimposed onto
existing feature modules, or both. The requirements of a new
feature can add behaviours, remove behaviours, or replace
behaviours in the requirements of existing features.

A. Base-Feature Modules

The requirements of a base feature are expressed as one
or more parallel UML-like state machines (called feature
machines). Figure 4 shows the feature module of the basic-
driving service (BDS) feature, which specifies basic driving
behaviour, such as turning the car’s ignition on and off,
acceleration and deceleration, and steering. A feature module
starts with a UML note that declares the name of the feature
and the SPL to which it belongs. In addition, each feature
machine (or machine fragment) in the module is prefaced
with a UML note that declares the machine.

In general, a feature machine consists of

• A set of states, one of which is designated the initial
state (by an arrow originating from a small black
circle). Each state is either a superstate, which contains
other states, or a basic state, which contains no other
states. A superstate contains one or more orthogonal
regions, where each region models a concurrent sub

state machine. Each sub machine may have a local
initial state.

• A set of transitions between states. A transition has a
label of the form

id: e [c] / id1: [c1] a1, · · ·, idn: [cn] an
where id is the name of the transition; e is an optional
triggering event; c is a guard condition; and a1..an are
concurrent actions, each with its own name idi and
guard condition ci. If a guard condition is not specified,
it is true by default.

In accordance with the Jackson and Zave RE reference
model [6], a feature machine monitors and controls world
phenomena: transition triggering events are normally world-
change events, guard conditions are predicate expressions
over the world state, and transition actions are world-change
actions (see Section II-B). Thus, a transition t is enabled
when the feature machine is in t’s source state, and the
current world state satisfies t’s triggering event and guard
condition. When t executes, the feature machine transitions
to t’s destination state and executes the actions of t whose
guard conditions are satisfied in the current world state. For
example, when the feature machine for BDS is in state on
and (message) event Accelerate occurs, the car’s intended
acceleration is recomputed using the unspecified function
acceleration() (transition t3 in Figure 4)2.

A triggering event may alternatively be a time event, with
syntax after(t). A time event occurs when the specified
duration t has passed since the transition’s source state was
entered.

B. Evolving a SPL

The requirements of a new feature can add new be-
haviours, or can specify intended feature interactions that
remove or replace behaviours in existing features. In all three
cases, such requirements can be modelled as state-machine
fragments that extend existing feature modules at specified
locations.

1) Adding Behaviours: New behaviours can be specified
by the following types of fragments:

• A new region that extends an existing state
• A new transition that extends an existing feature

machine. Adding a transition may involving adding new
states as the source or destination states.

• A new action that extends an existing transition
• A weakening clause that weakens the guard condition

of an existing transition or action by appending another
predicate through disjunction. Weakening a condition
results in the guarded transition or action being ex-
ecuted more frequently, and therefore leads to added
behaviours.

2The names of transitions, actions, and unspecified functions are unique
throughout the containing feature machine, transition label, and FORML
model, respectively.

CC{main.enabled.main.engaged}

t3: SetHeadway+(o) / a1: HC.headway := o.value

main

active

t2: override(CC{t6}) [slowRoadObjectAhead()] /

a1: AutoSoftCar.acceleration := acceleration(),

a2: CC.goalAccel := acceleration()

SPL AutoSoft

feature HC

fragment main extends CC{main.enabled.main.engaged}

inactive

t1: SetHeadway+(o) /

a1: HC.headway := o.value

Figure 6. HC feature module

Consider Figure 5, which shows the feature module for
cruise control (CC). The enabling of CC and its subsequent
behaviours — its activation, setting the cruise speed, sus-
pending CC when the driver accelerates too much or applies
the brakes — is only possible when the car is on. Thus, CC
is modelled as a sub machine running in a new orthogonal
region of BDS’s state on. The UML note that declares the
fragment also specifies its context: state BDS{main.on} (i.e.,
state on of feature-machine main in feature-module BDS).

It is possible to have enhancements of enhancements:
feature headway control (HC), shown in Figure 6, is enabled
only when CC is engaged and thus is modelled as a new
orthogonal region in CC’s state engaged.

2) Removing Behaviours: A new feature may want to
intentionally restrict the behaviours of existing features.
This is specified by strengthening the guard condition of
an existing transition or action with a new conjunct (called
a strengthening clause). Strengthening a condition results
in the guarded transition or action being executed less
frequently, and therefore leads to removed behaviours. For
example, whenever CC is active, BDS should not respond
to Accelerate messages and should defer to CC’s handling
of these messages. This behaviour is specified as a fragment
in CC (in the third UML note): the fragment strengthens the
guard condition on BDS’s transition t3, which ensures that
the transition executes only if CC is not in state active and
the driver is not accelerating enough to kick CC out of state
active3.

3) Replacing Behaviours: A second form of intended in-
teraction is where a new feature replaces existing behaviours
– by specifying new transitions that have the same or similar
enabling conditions as existing transitions, but have different
actions. FORML introduces language constructs to specify
such interactions explicitly:

• A transition priority specifies that a new transition,

3Strengthening and weakening clauses are named (e.g., the strengthen-
ing clause in CC is named “c”) so that they can be referred to and extended
by other strengthening and weakening clauses.

disabled

disengaged

engaged

t3: SetCruiseSpeed+(o) [engageCnd()] /

a1: CC.cruiseSpeed := AutoSoftCar.speed,

a2: CC.goalAccel = 0

t4: Decelerate+(o)

t1: EnableCC+(o)

t2: DisableCC+(o)

t5: [not engageCnd()]

inactiveactive

t8: Accelerate+(o) [driverOverride()]

t9: Accelerate+(o) [not driverOverride()]

enabled

main

main

BDS{main.on}

main

t6: after(t()) /

a1: AutoSoftCar.accleration := acceleration(),

a2: CC.goalAccel := acceleration()

t7: SetCruiseSpeed+(o) / a1: CC.cruiseSpeed := AutoSoftCar.speed

SPL AutoSoft

feature CC

fragment speed extends BDS{main.on}

fragment interaction extends BDS{main}

transition BDS{t3}: [strengthen with c: not inState(main.enabled.main.engaged.main.active) or driverOverride()]

Figure 5. CC feature module

t2, has priority over an existing transition, F{t1} in
feature-module F, whenever both are simultaneously
enabled. The construct is used when specifying the new
transition (the ellipsis refers to all of t2’s details):
t2 > F{ t1} : ...

• A transition override specifies that a new transition,
t2, that overrides an existing transition, F{t1} in feature-
module F. An override differs from a transition priority
in that the enabling condition of t2 is implicitly the
same as that of t1, but could be strengthened with an
additional guard c (the ellipsis refers to t2’s actions):
t2 : override(F{t1}) [c] / ...
Literally, this states that whenever F’s transition t1
is enabled, t2 executes instead — provided that the
behaviour model is in t2’s source state and guard
condition c is true.

• An action override specifies a new action, a2, that
overrides an existing action, F{a1} in a transition t in
feature-module F (the ellipsis refers to a2’s action).
F{t} : / a2: override(a1) [c] ...
Literally, this states that whenever F’s transition t
executes, action a2 is performed in place of a1 —
provided that the guard condition c is true.

For example, HC in Figure 6 overrides CC whenever the
car gets too close to the car ahead of it: HC (transition t2)
overrides CC (transition t6) to perform its own computations
of the intended acceleration, in order to maintain the desired
headway distance.

The requirements of a new feature can always be specified
as a separate feature machine, using FORML’s behaviour-
replacement constructs to model intended feature inter-
actions. However, we generally model new features as

fragments that extend other feature modules. Modelling
extensions as fragments focuses the reader’s attention on
the new requirements introduced by the fragments. It also
improves modifiability, because the requirements of the
existing features being extended are not replicated in the
new features. A new feature modelled as a fragment never
removes model elements from existing feature modules (e.g.,
as in [23]). Rather, a fragment is a structural addition to
the existing model, representing a variant behaviour due
to the new feature. This design choice eases the evolution
of FORML models in that the impact of new features is
additive, so modified features do not suffer from dangling
references to removed elements.

IV. COMPOSING FEATURE MODULES

The requirements for a SPL are derived by composing
the feature modules in the SPL’s behaviour model. The
composition yields an integrated model comprising a set of
parallel feature machines that have been extended with frag-
ments. Figure 7 shows part of the integrated model for the
AutoSoft SPL: BDS’s feature-machine main is extended with
CC’s region main, which itself is extended with HC’s region
main; and the guard on BDS’s transition t3 is strengthened
by feature CC with clause c. The region extensions and
the strengthening clause are shown in grey. Note that the
integrated model uses global names (e.g., CC’s transition t1
is named CC{t1}).

The integrated model captures the requirements of a SPL
and all of its valid configurations. Features that are optional
in the SPL are expressed as requirements that are conditional
on the feature’s presence in a product. For example in
Figure 7, the transitions and strengthening clause introduced
by CC are guarded by presence condition CC: the guarded

on

waitAccelerate

off

acceleration

steering

t1: IgniteOn+(o) /

a1: ...

feature-machine BDS{main}

...deceleration

t2: IgniteOff+(o) /

a1: ...

disabled

disengaged

CC{t3}: SetCruiseSpeed+(o)

[CC and CC{engageCnd}()] /

a1: CC.cruiseSpeed := AutoSoftCar.speed,

a2: CC.goalAccel = CC{acceleration}()

CC{t4}: Decelerate+(o) [CC]

CC{t1}: EnableCC+(o) [CC] CC{t2}: DisableCC+(o) [CC]

CC{t5}: [CC and not CC{engageCnd}()]

main

main

enabled

CC{main}

HC{main}

SPL AutoSoft

...

active

HC{t2}: override(CC{t6}) [HC and HC{slowRoadObjectAhead}()] /

a1: AutoSoftCar.acceleration := HC{acceleration}(),

a2: CC.goalAccel := HC{acceleration}()

inactive

HC{t1}: SetHeadway+(o) [HC] /

a1: HC.headway := o.value

engaged

...

...

t3: Accelerate+(o) [CC{c}: CC implies not inState(on.CC{main}.enabled.main.engaged.main.active) or CC{driverOverride}()] /

a1: AutoSoftCar.acceleration := acceleration()

Figure 7. Integrated AutoSoft behaviour model (“...” in transition labels and regions elides portions of the model)

behaviours are among a product’s behaviours iff CC is a
feature in the product.

If multiple weakening and strengthening clauses extend
the same guard condition, the way they are combined can
affect the valuations of the resulting condition. We define a
canonical composition of clauses:

(c ∧ s1 ∧ · · · ∧ sm) ∨ w1 ∨ · · · ∨ wn

where c is a guard condition that is extended by some num-
ber of weakening clauses {w1, · · · , wn} and strengthening
clauses {s1, · · · , sm}. Our canonical composition ensures
that the set of possible valuations is insensitive to the order
in which the features are composed. Moreover, it matches
the operation precedence, of conjunction over disjunction,
used in logic and programming languages.

We have designed the composition operator, which com-
poses feature modules into an integrated model, to be
commutative and associative. The proofs are based on the
commutativity and associativity of superimposition when ap-
plied to unordered abstract syntax trees (of feature machines
and of model fragments and their respective contexts). For
example,

• the union of parallel machines in an integrated model
• the union of concurrent regions in a machine
• the union of states and transitions in a region4

• the union of concurrent actions in a single transition
• the disjunction of weakening clauses in a guard; where

one disjunct is the conjunction of strengthening clauses
and the original guard condition

More complete proof sketches are provided in [24].

4Transitions are ordered only when explicitly prioritized or overridden,
and these orderings are insensitive to the order of feature composition.

V. CASE STUDIES

FORML achieves most of its goals (listed in Section I)
by design: it is based on the Jackson and Zave framework
for RE and uses standard notations such as UML-like syntax
and feature models; it supports modularity through feature
decomposition, the modelling of differences through frag-
ments, and the explicit modelling of intended interactions;
and it provides a composition operator for feature modules
that is commutative and associative. That FORML is precise
enough to enable automated analysis is the topic of ongoing
work.

With respect to the remaining goal of ease of evolution,
FORML supports the additive modelling of new features in
the behaviour model. However, the fact that a world model is
shared by all feature modules can complicate its evolution.
In particular, a new feature may change the world model
in such a way that syntactically invalidates existing feature
modules. For example, removing a world-model element
can result in dangling references; and adding an attribute,
association role, or message parameter can invalidate WCAs
that create objects or links (because such actions list the
values of the new object’s or link’s attributes, roles, or
parameters).

We have performed two case studies, one from the au-
tomotive domain and one from the telephony domain, with
the goals of (1) exploring the expressiveness of FORML,
and (2) evaluating the impact of evolving a FORML world
model with new features.

The automotive case study is an extension of AutoSoft
and is adapted from a GM Feature Technical Specification
for a family of automotive software features. In addition to
the three features described in the paper so far, the case

Table I
SUMMARY OF CASE STUDIES

feature add remove replace world model uf

automotive

BDS (sm) 1c, 1a, 5m, 1e 3

CC 1r (BDS) 1sc (BDS) 3at, 3m 4

HC 1r (CC) 1to (CC) 1c, 1a, 1m,

1at, ref

2

LCA 1r (BDS) 3c, 1a, 3m, ref 1

FCA 1r (CC) 1at, 3m, 1e 1

HP 2a, 1t (HC) 1c, 2a

SLC 1r (CC) 1to (CC) 1at, 2m 2

LCC 1a (BDS), 1r (CC) 1to (CC) 1at, 2m 4

LXC 1cs, 9t (LCC),

1wc (FCA),

2t (LCA)

1sc (FCA) 1to (LCC) 1at, 3m 5

RCA 1r (LCC),

1r (LXC)

 1m 2

DMS 1r (LCC) 1at, 1m

telephony

BCS (sm) 1c, 3a, 4m

CW 1bs, 2t (BCS) 3to (BCS) 1a, 1m

CD 1a (BCS) 1m

CDB 1sc (CD)

CFB 2a (BCS) 1sc (BCS) 1a

CT 1bs, 1cs, 5t (BCS) 1sc (BCS) 4to (BCS) 1a, 1m

TWC 2bs, 1cs, 6t (BCS) 1sc (BCS) 3to (BCS) 2a, 2m

GR 6a, 2t (BCS) 4a

RBF 1a, 1t (BCS) 1a

TL 1bs, 2t (BCS) 1to (BCS) 1a, 1at, 2m 2

TCS 1to (BCS) 1a

VM 1a, 2t (BCS) 1sc (BCS) 3c, 3a, 1m,

1at, ref

2

billing (sm) 1c, 1a, 2at 2

RC 1ao

(billing)

SB 2a (billing) 1ao

(billing)

1at 2

feature column:

LCA: lane-change alert, SLC: speed-limit control, FCA: forward-collision alert,

HP: headway personalization, LCC: lane-centering control, LXC: lane-change

control, RCA: road-change alert, DMS: driver-monitoring system, BCS: basic call

service, CW: call waiting, CD: caller-number delivery, CDB: caller-number

delivery blocking, CFB: call-forwarding on busy, CT: call transfer, TWC: three-

way calling, GR: group ringing, RBF: ringback when free, TL: teenline, TCS:

terminating call screening, VM: voice mail, RC: reverse charging, SB: split billing

add, remove, and replace columns:

Table entries list numbers of extensions to feature (F):

r: region, bs: basic state, cs: composite state, t: transition, a: action, ao: action

override, to: transition override, wc: weakening clause, sc: strengthening clause

world model column:

Table entries list numbers of changes to world model:

c: basic concept, a: association, m: message, e: enumeration, at: attribute,

ref: refactoring operation

study includes eight additional features. The adaptations
of this case study were to remove design-level informa-
tion from the original descriptions of the features, and to
omit behaviours that were of the same nature as already-
modelled behaviours and thus would not further exercise
the expressiveness of FORML. The telephony case study is
adapted from the Second Feature Interaction Contest [25],
and comprises a telephone-service SPL with 15 features.
The adaptions of this case study were minor adjustments
to feature descriptions with the goal of better exercising
FORML. The features are listed in the leftmost column of
Table I.

The case studies were performed in exploratory and
confirmatory phases. In the exploratory phase, the language
was refined as needed to specify completely a small subset
of the case studies’ features (specifically, the BCS, CW,
and CFB features in the telephony case study and the BDS,

CC, and HC features in the automotive case study). In the
confirmatory phase, the refined language was applied to the
rest of the features to assess expressiveness.

Expressiveness: The language features developed during
the exploratory phase were sufficiently expressive for the
confirmatory phase. However, the confirmatory phase did
result in language refinements to improve usability.

Table I gives summary information about the case-study
models. In each case study, the SPL’s requirements were
modelled incrementally by adding features one at a time in
the order in which they appear in Table I. The order was con-
strained by functional dependencies between feature types
(e.g., LCC depends on CC), but was otherwise random. The
requirements for BDS, BCS, and billing are each modelled
as a single state machine, as denoted in the table by the
postfix (sm). The other features’ requirements are modelled
as fragments; the add, remove, and replace columns state the
number and type of fragments used to specify each feature’s
added, removed, and replaced behaviours, respectively. The
world-model column indicates how the world model changed
with the addition of each feature, to reflect new concepts,
attributes, associations, etc. (excluding changes to the feature
model). Finally, the uf column gives the number of unspec-
ified functions that were introduced to abstractly represent
data logic and constants.

Ease of evolution: None of the world-model changes in
the case studies syntactically invalidated existing feature
modules. The addition of features HC and VM led to
world-model refactorings that generalized some concepts
into a supertype and some of their attributes/associations
moved to the supertype; however, references to the moved
attributes/associations remained valid, because these ele-
ments are inherited by the subtypes. In the case of LCA,
the refactoring modelled some phenomena in an alternative
way, which involved removing some concepts; in this case,
we were lucky because unspecified functions abstracted
away any dependence on the refactored portion of the
world model. In general, we believe that the impact due to
evolution is small: the removal of world-model elements is
not likely to occur frequently, and the invalidation of existing
WCAs can be avoided by assigning default values to new
attributes, roles, and parameters.

Due to space constraints, the models for the case studies
are not included in this paper. The telephony models can be
found in [24], and the automotive models are included in a
GM report that is still undergoing the GM internal approval
process.

VI. RELATED WORK

Requirements modelling: FORML adapts and extends
behavioural modelling methods that follow the Jackson and
Zave RE reference model [6] (e.g., KAOS [18], Fusion [26],
Larman [19], and SCR [27]). Our main extension is to make

features and their intended interactions explicit. Further-
more, we chose not to adopt the formal models of behaviour
in SCR and KAOS: SCR and KAOS models are decomposed
into fine-grained units (e.g., variables in SCR, and operations
in KAOS), such that further decomposition into features
would lead to a high scattering of feature behaviours across
these units. Instead, we added precision to the semiformal
use of UML state-machine diagrams.

Feature-oriented descriptions of SPL requirements: The
idea of modelling the common and variable requirements
of a SPL’s products as features was introduced in Kang et
al.’s feature-oriented domain analysis (FODA) method [20].
FODA is best known for introducing feature models but
it also proposes describing a SPL’s requirements using a
combination of an ER model, and an integrated behavioural
model parameterized by features. FODA does not prescribe
a particular behavioural modelling language, but [20] gives
an example that uses statecharts. However, the statechart
and ER models in the example are not interrelated. In
subsequent work, feature models have been integrated with
several requirements-description techniques, including use-
cases (in [9], [10]), use-case maps (in [11]), and goals and
scenarios (in [12]). However, such approaches do not follow
the Jackson and Zave RE reference model, do not result in
precise models, and do not support explicit modelling of
intended feature interactions.

Decomposing state-machines into feature modules:
FORML supports both parallel composition of feature ma-
chines and structural composition of machine fragments.
FORML uses superimposition for structural composition.
Although superimposition has been primarily applied to
code (e.g., [8], [28]), its application to state-machine models
has also been explored in AHEAD-based approaches [8],
[15] and in approaches for detecting unintended feature
interactions [17], [16]. However, the latter approaches have
limited [15], [16] or no support [17], [8] for explicitly mod-
elling intended feature interactions in state-machine models,
and in some approaches [15], [16] the order of composing
feature modules matters. Intended feature interactions are
realized by transitions that override existing transitions that
have the same name [15], or whose actions affect the same
variables [16]. However, there is no indication of whether
a new transition is supposed to be an overriding transition,
and if so, which transition(s) are overridden. Also, in Apel
et al.’s approach [15], it is not possible to explicitly specify
conditional overrides. Jayaraman et al. [23] propose using
graph transformations applied to model optional features
as transformations to an integrated model of mandatory
features. However, in this approach, mandatory features are
not separately described, the order in which feature modules
are composed matters, and behaviour replacement cannot be
explicitly modelled.

Two prominent approaches for composing feature ma-

chines are layered composition (e.g., DFC [7]), in which
feature machines react to events in some order and can
control the events seen by subsequent machines; and a
variant of parallel composition (e.g., [17], [4]), in which an
explicit (e.g., [4]) or implicit (e.g., [17]) precedence relation
between features resolves conflicts between their machines
during execution. However, such approaches do not sup-
port the explicit modelling of intended feature interactions.
Also, in layered-composition approaches, the mechanism
for specifying intended interactions (i.e., controlling events
sent to previously composed machines) depends on the
composition order, and can result in unintended overrides
among seemingly unrelated features.

Liu et al. [29] propose composing feature machines by
specifying a set of transitions between the states of the
feature machines. However, in this approach, explicit models
of intended interactions are not supported and the order of
composition matters.

Features and the RE reference model: The notion of
features has been previously explored in the context of
the RE reference model. Classen et al. [13], Nhlabatsi et
al. [5], and Tun et al. [14] consider a feature to be a
triple comprising a set of requirements, a set of problem-
world properties, and a specification. Nhlabatsi et al. do
not prescribe a notation for expressing the behaviours of
features; Classen et al. and Tun et al. use event calculus. In
contrast, our aim was to use standard notations, such as the
UML, to ease adoption by practitioners. Furthermore, these
approaches do not support explicit modelling of intended
feature interactions.

Other approaches for specifying SPL behaviours: Larsen
et al. [30] propose a theory where the interfaces of product-
line assets are modeled as modal I/O automata. However,
the approach is not feature oriented. Lauenroth et al. [31],
Czarnecki et al. [32], and Classen et al. [33] propose
methods involving integrated models of SPL behaviours with
mappings from features/variants to the model elements that
describe them. However, such approaches do not support
feature modularity and have limited [33] to no [31], [32]
support for explicit models of intended interactions. Classen
et al. model such interactions using transition priorities;
however, conditional priorities are not supported.

VII. CONCLUSIONS AND FUTURE WORK

We have presented FORML, a language for modelling
the requirements for features in a SPL. FORML integrates
and adapts best practices from RE and from FOSD, focusing
on behavioural models of feature modules. The distinguish-
ing aspects of FORML are (1) the inclusion of feature
phenomena and feature configurations in a SPL’s problem
world; (2) a systematic treatment of how new features evolve
a requirements model, with respect to added, removed, or
replaced behaviours; (3) language constructs for explicitly

modelling intended interactions among state-machine mod-
els of features; and (4) an operator for composing feature
modules that preserves intended feature interactions, yet is
commutative and associative. Other advantageous properties
of FORML include a UML-like syntax, to ease adoption;
and the ability to model new features as model fragments,
in order to focus on the feature’s essential requirements.

We are currently investigating analyses of FORML mod-
els. We are interested both in detecting unintended inter-
actions among features and in exploring the configuration
space of a SPL. This work entails determining how unin-
tended feature interactions manifest themselves in FORML
models, so that we know what properties and patterns the
analyses should look for. It also means modifying analysis
tools to so that they adhere to our semantics of feature
composition.

REFERENCES

[1] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf, “A
conceptual basis for feature engineering,” JSS, vol. 49, no. 1,
pp. 3–15, 1999.

[2] S. Apel and C. Kästner, “An overview of feature-oriented
software development,” JOT, vol. 8, pp. 49–84, 2009.

[3] T. F. Bowen, F. S. Dworack, C. H. Chow, N. Griffeth, G. E.
Herman, and L. Y-J, “The feature interaction problem in
telecommunication systems,” in SETSS, 1989, pp. 59–62.

[4] J. D. Hay and J. M. Atlee, “Composing features and resolving
interactions,” in SIGSOFT FSE, 2000, pp. 110–119.

[5] A. Nhlabatsi, R. Laney, and B. Nuseibeh, “Feature interaction
as a context sharing problem,” in ICFI, 2009, pp. 133–148.

[6] M. Jackson and P. Zave, “Deriving specifications from re-
quirements: an example,” in ICSE, 1995, pp. 15–24.

[7] P. Zave and M. Jackson, “A component-based approach
to telecommunication software,” IEEE Software, pp. 70–78,
1998.

[8] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-
wise refinement,” IEEE TSE, vol. 30, pp. 355–371, 2004.

[9] G. Chastek, P. Donohoe, K. C. Kang, and S. Thiel, “Product
Line Analysis: A Practical Introduction,” Software Engi-
neering Institute, Carnegie Mellon University, Tech. Rep.
CMU/SEI-2001-TR-001, 2001.

[10] M. Griss, J. Favaro, and M. d’ Alessandro, “Integrating
feature modeling with the RSEB,” in ICSR, 1998, pp. 76–
85.

[11] T. J. Brown, R. Gawley, I. T. A. Spence, P. Kilpatrick,
C. Gillan, and R. Bashroush, “Requirements modelling and
design notations for software product lines,” in VaMoS, 2007,
pp. 27–35.

[12] S. Park, M. Kim, and V. Sugumaran, “A scenario, goal
and feature-oriented domain analysis approach for developing
software product lines,” IMDS, vol. 104, pp. 296–308, 2004.

[13] A. Classen, P. Heymans, and P. Schobbens, “What’s in a
feature: A requirements engineering perspective,” in FASE,
2008, pp. 16–30.

[14] T. T. Tun, T. Trew, M. Jackson, R. Laney, and B. Nuseibeh,
“Specifying features of an evolving software system,” SPE,
vol. 39, pp. 973–1002, 2009.

[15] S. Apel, F. Janda, S. Trujillo, and C. Kästner, “Model su-
perimposition in software product lines,” in ICMT, 2009, pp.
4–19.

[16] M. Plath and M. Ryan, “Feature integration using a feature
construct,” Sci. Comput. Program., pp. 53–84, 2001.

[17] R. J. Hall, “Feature combination and interaction detection via
foreground/background models,” in FIW, 1998, pp. 449–469.

[18] A. van Lamsweerde, Requirements Engineering: From System
Goals to UML Models to Software Specifications. Wiley,
2009.

[19] C. Larman, Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and the Unified Process
(3rd Edition). Prentice Hall, 2005.

[20] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-oriented domain analysis (FODA) feasibil-
ity study,” Carnegie-Mellon University Software Engineering
Institute, Tech. Rep. CMU/SEI-90-TR-21, 1990.

[21] D. Jackson, Software Abstractions: Logic, Language, and
Analysis. The MIT Press, 2006.

[22] OMG, Object Constraint Language, OMG Available
Specification, Version 2.0, 2006. [Online]. Available:
http://www.omg.org/docs/formal/06-05-01.pdf

[23] P. K. Jayaraman, J. Whittle, A. M. Elkhodary, and H. Gomaa,
“Model composition in product lines and feature interaction
detection using critical pair analysis,” in MoDELS, 2007, pp.
151–165.

[24] P. Shaker and J. M. Atlee, “A feature-oriented requirements
modelling language,” David R. Cheriton School of Computer
Science, University of Waterloo, Tech. Rep. CS-2012-05,
2012.

[25] M. Kolberg, E. H. Magill, D. Marples, and S. Reiff, “Second
feature interaction contest,” FIW, pp. 293–310, 2000.

[26] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist,
F. Hayes, and P. Jeremaes, Object-Oriented Development: The
Fusion Method. Prentice Hall, 1994.

[27] C. L. Heitmeyer and R. D. Jeffords, “The SCR tabular
notation: A formal foundation,” Naval Research Lab, Tech.
Rep. NLR/MR/5546-03-8678, 2003, nLR/MR/5546-03-8678.

[28] S. Apel, C. Kästner, and C. Lengauer, “Featurehouse:
Language-independent, automated software composition,” in
ICSE, 2009, pp. 221–231.

[29] J. Liu, S. Basu, and R. R. Lutz, “Compositional model
checking of software product lines using variation point
obligations,” ASE, pp. 39–76, 2011.

[30] K. G. Larsen, U. Nyman, and A. Wąsowski, “Modal i/o
automata for interface and product line theories,” in ESOP,
2007, pp. 64–79.

[31] K. Lauenroth and K. Pohl, “Dynamic consistency checking
of domain requirements in product line engineering,” in RE,
2008, pp. 193–202.

[32] K. Czarnecki and K. Pietroszek, “Verifying feature-based
model templates against well-formedness OCL constraints,”
in GPCE, 2006, pp. 211–220.

[33] A. Classen, P. Heymans, P. Schobbens, A. Legay, and
J. Raskin, “Model checking lots of systems: efficient veri-
fication of temporal properties in software product lines,” in
ICSE, 2010, pp. 335–344.

	RE12.Copyright
	RE12c
	RE12.Copyright
	RE12

