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� Introduction

Software errors frequently arise from incorrect system
requirements� Successful requirements acquisition re�
quires a thorough review process in which both domain
experts and implementers can participate� Research
groups ��� ��� have developed notations with precise
meanings that can be read by both groups of reviewers�
In ���� we showed how such requirements� in particular
Software Cost Reduction 	SCR
 requirements� could be
analyzed with formal methods� We developed methods
for detailing SCR tabular requirements 	with informa�
tion that appears elsewhere in the SCR requirements
document
� translating the detailed requirements into
a �nite state machine 	representing the system�s global
reachability graph
� and proving safety assertions with
a model checker for branching�time temporal logic�

In this paper� we extend the SCR requirements no�
tation to specify systems� timing properties� We also
describe an analysis tool which automates the detail�
ing and translating steps of our analysis technique and
produces input for the model checker� To determine if
we could verify interesting properties of existing sys�
tem requirements� we use our new notation and tool to
analyze requirements for two well�known small prob�
lems� In addition to performing successful veri�ca�
tions of safety and timing properties of these systems�
we compare our reachability graphs and formulas with
those of the Modechart veri�er ��
�� a model checker for
Real�Time Logic 	RTL
 ��� which is based on interval
semantics�

�This work was supported by the O�ce of Naval Research
under Contract N���������K����� and by the Air Force O�ce
of Scienti�c Research under Contract AFOSR �������	

� SCR�CTL Methodology

This section brie�y describes Software Cost Reduction
	SCR
 requirements speci�cations and the Computa�
tional Tree Logic 	CTL
 model checker and shows how
they can be combined to specify and analyze behav�
ioral and timing requirements� A more formal presenta�
tion of the combined SCR�CTL methodology appears
in �
� ���
System speci�cation� SCR requirements were de�

veloped by a research group at the Naval Research
Laboratory as part of a general Software Cost Reduc�
tion project ��� �� ��� An SCR requirements document
speci�es a system�s behavior as a �nite set of event�
driven� state�transition machines that execute concur�
rently� Each machine i is a tuple hMi�Ki� SatE	C
� �ii�

� Mi is a �nite set of states� The states are called
modes� so named because they represent the sys�
tem�s di�erent modes of operation� The set of
modes associated with a particular machine is
called a modeclass� and the name of the modeclass
is used to refer to the machine� All of a system�s
modeclasses are �nite and mutually disjoint�

� Ki � Mi is the set of initial modes� Each mode�
class has at least one initial mode� which is speci�
�ed by the initial conditions of the system�

� SatE	C
 is the input alphabet for all the sys�
tem�s machines� C is a set of monitored variables
	boolean conditions
 that represent the system�s
environment�� and SatE	C
 is the set of satis�able
events over set C� An event is a change in the en�
vironmental state� Event �T	A
 occurs when en�
vironmental condition A becomes true� and event
�F	A
 occurs when A becomes false� The occur�
rence of an event can depend on the values of other
environmental conditions� event �T	A
 WHEN
�B� occurs if A becomes true while B is true� that
is� the event occurs at time t if A is false and B is
true at time t��� and A and B are both true at time
t� A is the triggering condition and B is the when

�Although conditions are boolean
 �rst�order predicate con�
ditions that can be represented by a �nite number of boolean
conditions �such as integer ranges� are also expressible	

�
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Table �� SCR requirements speci�cation of the railroad crossing system�

condition� The input alphabet of the machines is
the set of satis�able events SatE	C
 over C� where
an event is satis�able if the conjunction of its trig�
gering and when conditions is logically satis�able
and is logically consistent with all declared con�
straints on the values of environmental conditions�
	The declared constraints are described below�


� �i � 	Mi � SatE	C
 �Mi
 is the machine�s tran�
sition relation� A mode transition occurs between
modes in the samemodeclass as a result of an event
occurrence� Mode transitions are instantaneous
and occur the at the same time as their respec�
tive transition events�

� The model of time is discrete�

Informally� each modeclass describes one aspect of the
system�s behavior� and the global behavior of the entire
system is de�ned by the composition of all the system�s
modeclasses� The system is in exactly one mode of each
modeclass at all times�
SCR requirements have a tabular format that is in�

tuitive� easy to write and change� and scalable to large
systems 	e�g�� the software requirements for the A�
aircraft ���
� Table � is a requirements speci�cation
for the classic railroad crossing problem� The speci�
�cation consists of two modeclasses� The MONITOR

modeclass monitors the location of the train and parti�
tions all possible locations into four equivalence classes�
Approach� BC 	Before Crossing
� Crossing� and
Passed� The GATE�CONTROLLER controls the po�
sition of the railroad crossing gate based on the train�s
location� the modes represent the gate�s possible posi�
tions� Up� MoveDown� Down� MoveUp�

The initial modes of the system are Approach and
Up� assuming that the initial environmental conditions
satisfy predicate �Train� the system is not de�ned if a
train is initially present� Each row in the table speci�es
an event causing a transition from the mode on the left
to the mode on the right� Each column in the center of
the table represents an environmental condition� A ta�
ble entry containing an upper�case letter 	��T� or ��F�

signi�es the condition is a triggering condition of the
transition event� the condition must change value 	to
true or false� respective
 to activate the mode transi�
tion� A table entry containing a lower�case letter 	�t� or
�f�
 signi�es the condition is a when condition of the
transition event� the condition must have a particu�
lar value 	true or false� respectively
 both immediately
before and at the time of the event occurrence� If a
condition is neither a triggering condition nor a when
condition of a transition event� then the corresponding



table entry is marked with a hyphen 	���
� For exam�
ple if the railroad crossing MONITOR is in mode Ap�
proach and a train is detected �T	Train
� then the
MONITOR transitions into mode BC�
We adapted van Schouwen�s Inmode	
 and Drtn	


functions ���� to represent state and timing constraints
as boolean �environmental� conditions� A state con�
dition speci�es whether or not the system is in a par�
ticular mode� A timing condition speci�es whether or
not the system has been in a particular mode for a par�
ticular length of time� We express delay constraints
as timing conditions in when clauses� the when con�
dition In�BC����� in the second row of the MONI�
TOR modeclass ensures that the transition fromBC to
Crossing is delayed until the system has been in mode
BC for 
�� time units� Deadline constraints are ex�
pressed as negated timing conditions in when clauses�
when condition �In�MoveDown���� in the second row
of the GATE�CONTROLLER modeclass ensures that
the �rst transition fromMoveDown to Down cannot
occur if the system has been in mode MoveDown for
more than �� time units� Hard deadlines are speci�ed
as unconditional events� for example� transition event
�T	In�MoveDown����
 of the second transition from
MoveDown to Down speci�es that the system must
exit modeMoveDown within �� time units of entering
the mode�

We have built an analysis tool� tcart �
� ��� that
transforms an SCR requirements speci�cation into a
format that can be formally analyzed� First� the
SCR requirements must be detailed with missing 	but
known
 information concerning the values of system
conditions� To enhance readability of SCR require�
ments� events reference the least number of environ�
mental conditions that need to be monitored to detect
the event� In the railroad crossing example� an event
triggered by the gate being lowered 	�T	GateDown


must depend on GateUp being false� though this may
not be an explicit when condition of the event� Like�
wise� at most one of the conditions representing the
train�s location 	Approaching� Train� and TrainXing

can be true at any time� The syntax and semantics
of the relationship speci�cations are described in �
��
for the purposes of this paper� relation j denotes an
enumeration and relation ��� denotes a type of impli�
cation� tcart accepts a list of condition relationships
and details the mode transition tables with additional
triggering and when conditions that explicate these
relationships� In our machine mode� an event e is not
satis�able 	e �� SatE	C

 if it violates any of the listed
condition relationships�
Second� tcart derives all possible sequences of si�

multaneous mode transitions and explicitly adds these
sequences to the transition relations �i as �new� mode
transitions� A simultaneous mode transition occurs if a

transition is enabled at the time its source mode is en�
tered� the enabled transition is immediately activated
and the system e�ectively spends no time in the transi�
tion�s source mode� For each sequence of simultaneous
mode transitions� tcart creates a new transition from
the source mode of the sequence�s �rst transition to the
destination mode of the last transition� the transition
event of the new compound transition is the conjunc�
tion of all the sequence�s transition events� If a mode�
class contains a cycle of mode transitions that can occur
simultaneously� an error message is issued�

If the speci�cation consists of multiple concurrent
modeclasses� then the next phase composes the mod�
eclasses into a single global speci�cation� A node
in the global speci�cation 	called a global mode
 rep�
resents several current modes� one mode from each
modeclass� Starting with the set of possible initial
global modes� the composition algorithm determines
whether the mode transitions leaving the component
modes of the reachable global modes lead to new reach�
able global modes� The result of composing n ma�
chines is a global� event�driven� state�transition ma�
chine G � hM�K� SatE	C
��i� where

� M � 	M� � � � � �Mn
 is the set of global modes�

� K � 	K� � � � � � Kn
 is the set of initial global
modes�

� SatE	C
 is the input alphabet� and

� � � 	M� SatE	C
�M
 is the global transition
relation�

This global machine represents the system�s un�timed
reachability graph�

Fourth� tcart prunes from the global system speci�
�cation all global transitions whose timing constraints
are not satis�able� In the previous step� timing re�
quirements were ignored when constructing the sys�
tem�s reachability graph� There are �ve reasons why
a global transition�s timing constraints might never be
satis�ed�

�� The transition�s delay constraint is greater than its
deadline constraint�


� The transition�s delay constraint is greater than
the hard deadline for leaving the source global
mode�

�� The transition�s deadline constraint has already
passed when the source global mode is entered�

�� The transition�s event contains a state condition
In	A
 or timing condition In	A�t
 that must be
true� but A is not a component mode of G�

�� The transition�s event contains a state condition
In	A
 that must be false� but A is a component
mode of G�



For example if the railroad crossing system is in global
mode BC�MoveDown� then according to the sys�
tem�s untimed reachability graph� the system can either
transition into global mode Crossing�MoveDown
via transition BC�Crossing or it can transition into
BC�Down via one of the MoveDown�Down transi�
tions� However� the system can never transition from
BC�MoveDown to Crossing�MoveDown because
of the transitions� timing constraints� the component
modes BC and MoveDown are entered at the same
time 	because the only entry into MoveDown is trig�
gering by the system�s entry into BC
 and the sys�
tem must exit modeMoveDown before the delay con�
straint on transition BC�Crossing can be satis�ed�
To determine whether or not a global transition�s tim�
ing requirements are satis�able� one needs to know how
long the system has been in the component modes of
the transition�s source global mode 	at the time the sys�
tem enters the transition�s source global mode
� At the
same time� the calculation of how long the system has
been in a global mode�s component modes is based on
which global transitions into that global mode are sat�
is�able� Therefore� the process of pruning unsatis�able
global transitions is iterative�

� Global transitions are tested to determine if their
timing constraints are satis�able with respect to
the current information on how long the source
global mode�s component modes had been active
upon entry into the source global mode�

� The timing information on how long a global
mode�s component modes had been active upon
entry into the global mode is updated based on
	�
 the set of satis�able global transitions enter�
ing that global mode� 	

 the timing constraints
of these satis�able global transitions� and 	�
 the
current timing information of their source global
modes� component modes�

The result of this phase is a global� event�driven� state�
transition machine that represents the system�s timed
reachability graph�
Finally� some of the satis�able global transitions

in the timed reachability graph have delay 	or dead�
line
 constraints of zero time units� These transi�
tions may 	or must
 be activated as soon as the sys�
tem enters their source global mode� The technique
for collapsing simultaneous global transitions is simi�
lar to the technique for representing sequences of si�
multaneous mode transitions as new compound tran�
sitions� described above in tcart�s second step� The
only di�erence is that in this phase� global transitions
with zero�time deadline constraints are removed from
the system�s global transition relation� If the rail�
road crossing system is in global modeApproach�Up�
transition Approach�BC in modeclass MONITOR

causes a simultaneous transition from Up to Move�
Down in modeclass GATE�CONTROLLER� The re�
sult is e�ectly a global transition from global modeAp�
proach�Up to global mode BC�MoveDown� tcart
creates a new global transition fromApproach�Up to
BC�MoveDown� whose transition event is �T	Train

� �T	In�BC�
� the new transition is added to the
system�s global transition relation� and intermediate
transitions Approach�Up�BC�Up and BC�Up�
BC�MoveDown are removed from the relation� If
the reachability graph contains a cycle of simultaneous
global transitions� then an error message is issued�

At this point� the requirements speci�cation is in a
detailed format that can be formally analyzed� To use
a particular analysis tool� one needs to transform the
timed reachability graph into an appropriate represen�
tation that the analysis tool will accept� tcart converts
the �nal event�driven� state�transition machine into a
Computational Tree Logic 	CTL
 machine� which can
then be analyzed with the CTL model checker� In�
formally� a CTL machine is an extended �nite state
machine� in which each state is annotated with tran�
sition conditions 	environmental conditions
 and at�
tributes 	properties distinct from environmental con�
ditions
� The values of the environmental conditions
determine which of the current state�s transitions is
enabled� If more than one transition can be enabled
simultaneously� then the CTL machine is nondetermin�
istic�

A CTL machine cannot model a system that allows
sequences of simultaneous state transitions� It is for
this reason that tcart replaces sequences of simultane�
ous transitions in the SCR speci�cation with represen�
tative compound transitions� Furthermore� a CTL ma�
chine cannot naturally model events� CTL state tran�
sitions occur based on the current state and the cur�
rent values of the environmental conditions� To model
events� two CTL states are used to represent a global
mode� a CTL mode state and a CTL exit state� The
CTL states and transitions below model SCR transition
BC�Down�Crossing�Down�

BC  Down  ExitBC  Down

~TrainXing & 
    InBC299  

TrainXing & 
  InBC299

The CTLmode state represents the system in the global
mode and is annotated with the names of the global
mode�s component modes 	e�g�� BC and Down
� The
CTL exit state represents the system leaving the global
mode due to the occurrence of an event� It is anno�
tated with the names of the global mode�s component
modes plus an additional state attribute Exit� to in�
dicate that the CTL state is an exit state� The transi�
tion leaving the CTL exit state 	and entering the CTL
mode state of the destination global mode
 is anno�



tated with the values of event conditions 	TrainXing
and In�BC�����
� The transition from the CTL mode
state to its exit state is annotated with the values of
the conditions immediately before the event occurrence
	when condition In�BC����� is true� but the trigger�
ing condition TrainXing is false
� The two CTL tran�
sitions together represent the event�s triggering condi�
tions changing value 	TrainXing becomes true
 while
its when conditions are satis�ed 	In�BC����� remains
true
� Multiple CTL exit states are needed to represent
the events of multiple transitions from the same global
mode�
Assertion language� A CTL machine can serve

as a temporal logic model of a system� and a model
checker can be used to test whether declarative spec�
i�cations 	phrased as temporal formulas
 hold in the
model� The declarative speci�cations are expressed as
formulas in a propositional branching time logic called
computational tree logic 	CTL
� CTL is de�ned in ����
the syntax and semantics of the operations used in this
paper are summarized below�

�� Every output proposition is an atomic CTL for�
mula�


� Every input condition is an atomic CTL formula�

�� If f and g are CTL formulas� then so are� � f �
f	g� f jg� AXf � EXf � EFf � AGf �

The symbols � 	not
� � 	and
� and j 	or
 are logical
connectives and have their usual meanings� Formula
AXf 	EXf
 means that f holds in every 	in some
 im�
mediate successor of the current state� F is the eventu�
ality operator� and EFf means that along some path�
there exists a future state in which f holds� G is the
invariance operator� and AGf means that along every
path� f holds in every state� Declarative speci�cations
are invariant� so the formulas we want to check are of
the form AGf � the other temporal operators are used
to describe the properties that should be invariant�
Some of the invariant properties that should hold in

the railroad crossing example are�
AG	Crossing � Down

AG		MoveDown � �InMoveDown��


��EX	Down


EF 	MoveDown � �InMoveDown��


The �rst formula is a safety property� It states that
if the train is in the railroad crossing� then the gate
must be down� The latter two formulas express a delay
constraint� The second formula states that the transi�
tion from MoveDown to Down cannot be activated
	next
 if the transition�s delay constraint has not been
satis�ed� The paired formula precludes the possibility
that the second formula is only vacuously true�
Model checker� The MCB model checker accepts

a CTL machine and a CTL formula� and determines
whether or not the formula holds in the machine� The

model checking algorithm determines the truth of a for�
mula F in phases� �rst processing F �s subformulas of
length one� then F �s subformulas of length two� etc��
until �nally processing the entire formula F � During
phase i� all subformulas of length i are evaluated at
each state with respect to that state�s annotated propo�
sitions� its transition conditions� and its evaluations of
subformulas of length less than i� Formula F is a prop�
erty of the system if it is evaluated true in the machine�s
initial state�

� Modechart

This section brie�y describes the Modechart speci�ca�
tion language and its veri�er� More thorough descrip�
tions of this system can found in ��� �
��
System speci�cation� Modechart is a hierarchical�

graphic� requirements language� The root mode con�
tains a set of machine modes� which represent sequen�
tial machines that execute in parallel� Each machine
mode is described by a set of lower�level modes and
transitions among those modes� Each lower�level mode
is either a primitive mode or a set of primitive modes
running in parallel� where set of primitive modes repre�
sents the set of actions that the lower�level mode must
perform� The system is always in exactly one lower�
level mode in each of the machine modes� Whenever
a non�primitive lower�level mode is entered� all of its
children begin executing� Whenever such a lower�level
mode is exited� all of its children terminate�� Transi�
tions between modes may be conditioned on the occur�
rence of events� the values of predicates� or delay and�or
deadline constraints� For example� a mode transition
from A to B might be activated by the system�s entry
into mode C 	i�e��� C
� or by the delay�deadline pair
	
����
� A transition activated by an event occurs at
the same time as the event� A transition conditioned on
delay�deadline pair 	r� d
 is enabled when at least r and
at most d time units have passed since the transition�s
source mode was entered� the transition must occur af�
ter d time units have passed� if no other transition from
the source mode has been activated�

Figure � contains a Modechart speci�cation for the
railroad crossing problem� Machine mode MONITOR
monitors the location of the train� and machine mode
GATE�CONTROLLER monitors and controls the po�
sition of the crossing gate� The lower�level modes cor�
respond to the modes used in the SCR speci�cation of
the same system� All of the transitions between modes
in the MONITOR mode are enabled by timing con�
ditions� while those in GATE�CONTROLLER are ei�

�The Modechart speci�cation language is actually less struc�
tured than the description presented here
 but the veri�er will
only accept speci�cations in the above format	
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Figure �� Modechart requirements speci�cation of the railroad crossing system�

ther activated by timing conditions or by mode tran�
sitions in the MONITOR� In Modechart� the GATE�
CONTROLLER transition fromMoveUp to Up is an�
notated with timing constraint 	
�����
� specifying a
transition delay of 
� time units and a deadline of ���
time units� The Modechart transition from MoveUp
to MoveDown is annotated with �BC� indicating it
is activated when the MONITOR enters BC� In the
SCR speci�cation� timing conditions In�MoveUp�
��
and �In�MoveUp
��� correspond to the delay�deadline
pair 	
�����
� and state condition In�BC� corresponds
to the mode entry event �BC�

Modechart�s veri�er builds a �nite computation
graph representing a system�s state space� The com�
putation graph is the input to decision procedures that
evaluate formulas written in its assertion language�
Each node is labeled with the set of current system
modes� the current values of state variables� the set
of actions being performed� and a list of simultaneous
events� Each edge represents one di�erence between its
source node and destination node 	e�g�� a new system
mode or new variable value
�

For each node N� a set of potential successors and a
separation graph are generated� The separation graph
nodes are nodes which lie on the path from the sys�
tem�s initial node to N and N�s potential successors�
The separation graph edges are weighted to represent
timing constraints� positive weights are delays and neg�
ative weights are deadlines� A potential successor Pi is
pruned from the computation graph if the transitions
from another potential successor Pj must activate 	due
to timing constraints
 before any of Pi�s transitions are

�We subtract one time unit from each delay constraint so that
a transition annotated with aWHEN delay constraint is enabled
at the same time the Modechart delay would be enabled	

enabled� If two nodes in the computation graph have
the same label and the distances� between the nodes
and their potential successors 	and vice versa
 are iden�
tical� then the two nodes are equivalent� one of the
nodes is deleted from the graph and edges to it are
replaced by edges to the other node�
Assertion language� The Modechart veri�er has

two sets of operators which permit assertions to be writ�
ten about modes and mode entry events� respectively�
We de�ne the meanings of only the formulas used in
our case study�

An M�interval is a set of consecutive nodes in a com�
putation graph� each of which is labeled with system
modeM� The following formulas state relationships be�
tween M�intervals�

cm M� M� evaluates to true if each M��interval con�
tains a subset which represents an M
�interval�
and evaluates to false otherwise�

xm M� M� evaluates to true if there is no overlap be�
tween any M��interval and M
�interval� and eval�
uates to false otherwise�

et M� gives the minimum and maximum times the
system spends in all its M��intervals�

For example� the safety assertion we want to verify in
the railroad crossing example 	that the gate is down if
the train is in the railroad crossing
 would be expressed
as a cm formula�

cm�Crossing�Down�
M�interval formulas are only veri�able if the modes be�
ing compared cannot starve 	i�e�� there is no 	in�nite


�The distance between two points is the maximum sum of the
weights along any path from the �rst point to the second	



execution trace in which either mode does not occur
in�nitely often
�
An MN�interval is a set of consecutive nodes in a

computation graph that starts with a mode entry event
into mode M and ends with a mode entry event into
mode N� An event occurrence is denoted as an instan�
tiation of the occurrence function ���� where �	E�i
 is
the time of the ith occurrence of event E� For example�
�	�M � ��
 denotes the point in time in which the sys�
tem enters modeM for the tenth time� The second set
of formulas state relationships between MN�intervals�
One such formula is iu�

iu �M� �M� �M� �M� evaluates to true if the
xth entry into M� is followed 	eventually
 by
the xth entry into M
� the yth entry into M�
is followed by the yth entry into M�� and every
	xth
 M�M
interval is contained within some 	yth

M�M��interval�

�x	y� 	�	�M�� y
 � c� R� �	�M�� x



	�	�M�� x
� c� � �	�M
� x



	�	�M
� x
� c� R� �	�M�� y

�

where each ci must be a non�negative integer and
each Ri must be either � or ��

The safety assertion for the railroad system can also be
stated as an iu formula�

iu��Crossing� �Passed� �Down� �MoveUp�
This formula states that every Crossing�Passed in�
terval is contained within a Down�MoveUp interval�
MN�interval formulas can only be used if the formula
is preserved along every path and every cycle in the
computation tree� A formula is preserved on a compu�
tation path 	cycle
 if and only if for each MN�interval
referenced in the formula� the endpoints of that inter�
val appear an equal number of times along that path
	cycle
�
Model checker� The decision procedures for formu�

las are graph�search algorithms� For example� the de�
cision procedure for xm M� M� sequentially searches
the computation graph nodes for all M��intervals� For
each of these� recursive searches locate all subsequent
and prior M
�intervals� The distances between the en�
tries and exits of each pair of M�� and M
�intervals are
compared to determine if any of the intervals overlap�

� Case Studies

We used our timed SCR�CTL analysis tools and the
Modechart veri�er to analyze two existing require�
ments� a railroad crossing gate ���� and a nuclear rods
control system � �� The railroad crossing requirements
speci�cation used in this study was adapted to Mod�
echart in ��
�� The speci�cation for the nuclear rods

control system was originally speci�ed as a set of RTL
formulas� from these formulas we produced SCR and
Modechart requirements�
Railroad crossing� The SCR and Modechart speci�

�cations of the railroad crossing systems were displayed
previously in sections 
 and �� respectively� The SCR
requirements includes a list of the relationships that
hold between environmental conditions�

Approaching j Train j TrainXing
GateDown ��� �GateUp

The �rst relationship states that the train is either far
away� near the crossing� or in the crossing� The second
relationship states that whenever the gate is down� the
gate is not up� Based on this list� tcart adds additional
triggering and when conditions to the table that ex�
plicate these relationships� For example� �GateUp is
added as awhen condition to the second row in GATE�
CONTROLLER� In addition� tcart deduces all of the
timing relationships between the state and timing con�
ditions 	e�g�� In	MoveUp����
 implies In	MoveUp���


and adds triggering and when conditions to explicit
these timing relationships�

The two modeclasses are so tightly coupled that our
CTL machine and the corresponding Modeclass com�
putation graph are almost simple cycles 	e�g�� the com�
putation graph contains �� points� only one of which
has more than a single successor
� Thus verifying this
speci�cation was quite straightforward�

The most important formula to verify was the safety
property� if the train is in the railroad crossing� then
the gate must be down� This property is expressed by
the following CTL formula�

AG	Crossing � Down


In addition� the speci�cation had several delay and
deadline constraints� among which were�

AG		MoveDown� �InMoveDown��

��EX	Down



EF 	MoveDown� �InMoveDown��

AG	InMoveDown�� � AX	Down


EF 	InMoveDown��


The �rst pair of CTL formulas express a delay con�
straint� the �rst formula states that the transition from
MoveDown to mode Down cannot be the next acti�
vated transition if its delay constraint has not been sat�
is�ed� the paired formula precludes the possibility that
the �rst formula is only vacuously true� The second
pair of CTL formulas represent a hard deadline con�
straint� if the system has been in MoveDown for ��
time units� then the next transition must enter mode
Down� the paired formula guarantees that the dead�
line can be reached� All �ve formulas were successfully
veri�ed�



The Modechart veri�er provides several operators
that can be used to express the safety property�

� cm	Crossing�Down
 states that every instance of
mode Crossing is also an instance of modeDown�

� iu	�Crossing�� Passed��Down��MoveUp

states that every interval between entering Cross�
ing and entering Passed is contained within some
interval that starts when Down is entered and ends
when MoveUp is entered�

When an iu command evaluates to true� Modechart�s
veri�er calculates the minimumseparation between the
interior and exterior intervals� In this example� the ver�
i�er �nds that the interior interval 	between�Crossing
and �Passed
 is entered at least 
�� time units after
the exterior interval has been entered�

�x	y 	�	� Down� y
 � 
�� �� �	� Crossing� x



	�	� Crossing� x
 � � � �	� Passed� x



	�	� Passed� x
 � � �� �	�MoveUp� y



Modechart�s et command veri�es delays and dead�
lines by determining the minimumand maximumtimes
the system spends in any mode� For example�

et	�MoveUp

calculates that whenever the system enters mode
MoveUp� it remains in the mode at least 
� time units
and at most ��� time units before exiting�
Nuclear control rods� The nuclear control rod

example monitors the movement of two rods in a nu�
clear reactor� A human operator requests that a rod
be moved by pushing a button� The nuclear control
rods system then runs tests to ensure that it is safe to
move the rod� issues a request to move the rod to the
system�s Manager process� waits for permission from
the Manager to move the rod� and then moves the rod�
Timing constraints govern the movement of rods and
the frequency with which the Manager can grant re�
quests�
Each speci�cation contains three modeclasses run�

ning in parallel� modeclasses SUBSYS� and SUB�
SYS
 describe the sub�systems that operate the two
control rods and modeclass MANAGER determines
which of the sub�systems 	if any
 can move its rod�
The MANAGER modeclass consists of four modes�
MStart� Stable 	No rods moving�
� Grant�� and
Grant�� The sub�system modeclasses each have
seven modes� describing the various stages of a control
rod�s movement� The modes for modeclass SUBSYS�
are� S�Start� S�None 	waiting for a button press
�
S�Check� S�Req 	ask for permission to move rod
�
S�Wait� S�RecGrant 	receive permission to move
rod
� and S�MoveRod� Modeclass SUBSYS
 has the
same modes as modeclass SUBSYS�� pre�xed with S�

rather than S�� None of the environmental conditions
are related�

The three modeclasses are not nearly as tightly cou�
pled as the modeclasses in the railroad crossing example
were� The CTL machine representation of the nuclear
rods control system consists of ��� states and ��� tran�
sitions� The computation tree of our initial Modechart
speci�cation consisted of ���� nodes and ����� edges�
and contained a zero�time transition cycle 	which went
undetected
� We had assumed that actions R� and R

	which assign request variables req� and req
 to true

would cause delays in the sub�system cycles because ac�
tions cannot be performed in zero time units� action R�
	R

 is started when mode S�Req 	S�Req
 is entered�
and mode S�Req 	S�Req
 cannot exit until action R�
	R

 terminates� However� if the action terminates at
the same time as mode S�Req is entered 	i�e�� if zero
time units have passed since mode S�Req last exited
�
the system immediately transitions out of S�Req and
the action is not restarted� Adding a one unit time de�
lay to the transition fromMoveRod to None removed
the zero�time cycle and reduced the number of nodes
to ���� and the number of edges to ��
� ��

The RTL speci�cation included a safety property
that stated the two control rods could not move at the
same time� The CTL and Modechart veri�er formulas
that correspond to this safety assertion are

CTL� AG	� 	S�MoveRod�S
MoveRod


Modechart� xm	S�MoveRod� S
MoveRod


We veri�ed the CTL formula with the CTL model
checker within two seconds wall time� We tried to ver�
ify the xm formula� but the Modechart veri�er did not
complete its evaluation given more than 
�� hours wall
timeWe do not know whether it would have terminated
if we had waited longer�

We were able to verify several other interesting in�
variants with the CTL model checker� but not with the
Modechart veri�er� Among these assertions were that
if a sub�system is moving its rod� then the Manager
must be in a mode indicating that it has granted that
sub�system permission to move its rod� and the two
sub�systems cannot both be in their respective Rec�
Grant modes simultaneously�

Using either the CTL model checker or Modechart�
we were able to verify all the delay and deadline con�
straints� The delay constraints insisted if the Manager
was in a Grant mode that it remain there for at least
�� time units� The deadline constraints were that the
Manager exit a Grant mode after �� time units� that
each sub�system must start moving its rod within �
time units of receiving permission to do so� and that

�Not all of the edges belong to the pruned computationgraph

but the veri�cation algorithms look at them all	
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� SCR and Modechart speci�cations of the nuclear rods control system�



each sub�system could only move its rod for 
� time
units�

� Conclusion

The greatest di�erence between SCR�CTL and Mod�
echart analysis is the construction of the reachability
graphs� In a CTL machine� a global SCR mode is
represented by one CTL mode state plus a CTL exit
state for each satis�able global transition leaving the
global mode� Imprecise 	but accurate
 timing informa�
tion about how long a global mode�s component modes
have been active is used to construct the reachability
graph� but this information is absent from the �nal rep�
resentative CTL machine� As a result� arbitrary formu�
las about time cannot be veri�ed using a CTL machine
representation�
In a Modechart computation graph� the precise

length of time a global mode�s component modes have
been active is always known because a di�erent graph
node is used to represent each equivalence class of pos�
sibilities� If one component mode can be active for
up to ��� time units and another component mode
can also be active for up to ��� time units� the global
mode could be represented by up to ������ computa�
tion graph nodes� As a result� the size of the compu�
tation graph explodes whenever the system consists of
loosely coupled machines�
Also� each edge in a Modechart computation graph

represents a single event� Sequences of simultaneous
events are represented by paths that are traversed in
zero time units� In a CTL machine� such zero�time
paths are collapsed into a single compound transition
which represents many state changes� tcart detects the
existence of zero�time cycles in the speci�cation and is�
sues appropriate error messages� The Modechart veri�
�er does not yet support this capability�
Since information about how long each component

mode has been active is retained in the Modechart com�
putation graph� time bounds can be computed� For
example� formula et�M� gives the minimum and max�
imum times the system spends in mode M� However�
a mode�s minimum and maximum times are bounded
by the delay and deadline constraints on its transitions�
and SCR�CTL analysis can verify a mode�s delays and
deadlines� In our experiments� this capability was suf�
�cient�

The greatest di!culty with the SCR�CTL analysis
technique involves the construction of the CTL formu�
las to be checked� One of the strengths of the Mod�
echart veri�er is the compact representation of its as�
sertion language� The main purpose of this language is
to restrict the type of RTL formulas one can input to
the veri�er� A similar front�end could be constructed

for the CTL model checker that would ease the phras�
ing of CTL formulas to be veri�ed�

Another strength of the Modechart speci�cation lan�
guage is that one can specify persistent state variables
and actions to be performed upon mode entry� How�
ever� since the veri�cation formulas can only reference
modes and mode entry events� no analysis can be per�
formed on the values of variables or the status of ac�
tions� Furthermore� each computation graph node is
annotated with current values of the state variables and
the currently activated actions� this further increases
the size of the computation graph without increasing
the power of the veri�er� Most importantly� there is a
problem with the semantics of Modechart that allows
a state variable to be both true and false in the same
time instant 	in di�erent nodes along a zero�time path
�

The greatest di!culty with using the Modechart ver�
i�er is that it is too easy to write speci�cations that
cannot be veri�ed� cm� um� and et formulas can only
be veri�ed if modes referenced by these formulas cannot
starve 	which is possible in speci�cations having in�nite
deadlines on transitions
� Interval formulas such as iu
can only be veri�ed if the mode intervals referenced by
the formula are preserved along every path and every
cycle in the computation graph� An interval formula is
not preserved if the beginning endpoint of an interval
occurs before a cycle and the ending endpoint of the
interval occurs within the cycle� The use of unique ini�
tial modes 	that are never entered again
 helps avoid
unpreserved formulas� but this is not a theorem�

The other major problem we had using the Mod�
echart veri�er was the response time� On small exam�
ples like the railroad crossing system� the response time
was negligible� Also� the veri�er responded quickly
when calculating timing properties of the nuclear rods
control system� However� we were not able to eval�
uate M�interval and MN�interval formulas� It is not
known whether the veri�cation routines contain an in��
nite loop or are simply computationally expensive� We
should also note that all of our experiments were run
using versions of the Modechart veri�er that were avail�
able in November ���
 and February ����� A new ver�
sion of the veri�er was released in March ����� but
there was not time to evaluate it for this publication�

The most important lesson learned from these ex�
periments is that a real�time analysis tool is not always
needed to analyze real�time systems� All safety and
timing properties one wanted to verify in the railroad
crossing and nuclear rods examples could be veri�ed
using the CTL model checker� More work needs to be
done to determine additional real�time properties that
require more powerful veri�ers�
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