
ACM	Copyright	Notice	
© ACM 1993
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

Published	in:	Proceedings	of	the	International	Symposium	on	Software	
Testing	and	Analysis	(ISSTA'93),	June	1993	

“Analyzing Timing Requirements”
Cite as:

BibTex:

DOI: http://dx.doi.org/10.1145/154183.154264

Joanne M. Atlee and John Gannon. 1993. Analyzing timing requirements. In Proceedings of
the 1993 ACM SIGSOFT international symposium on Software testing and analysis (ISSTA
'93), Thomas Ostrand and Elaine Weyuker (Eds.). ACM, New York, NY, USA, 117-127.

@inproceedings{Atlee:1993:ATR:154183.154264,
 author = {Atlee, Joanne M. and Gannon, John},
 title = {Analyzing Timing Requirements},
 booktitle = {Proceedings of the 1993 ACM SIGSOFT International Symposium on Software
Testing and Analysis},
 series = {ISSTA '93},
 year = {1993},
 pages = {117--127}
}

Analyzing Timing Requirements

Joanne M� Atlee

University of Waterloo

Waterloo� Ontario

John Gannon�

University of Maryland

College Park� Maryland

� Introduction

Software errors frequently arise from incorrect system
requirements� Successful requirements acquisition re�
quires a thorough review process in which both domain
experts and implementers can participate� Research
groups ��� ��� have developed notations with precise
meanings that can be read by both groups of reviewers�
In ���� we showed how such requirements� in particular
Software Cost Reduction 	SCR
 requirements� could be
analyzed with formal methods� We developed methods
for detailing SCR tabular requirements 	with informa�
tion that appears elsewhere in the SCR requirements
document
� translating the detailed requirements into
a �nite state machine 	representing the system�s global
reachability graph
� and proving safety assertions with
a model checker for branching�time temporal logic�

In this paper� we extend the SCR requirements no�
tation to specify systems� timing properties� We also
describe an analysis tool which automates the detail�
ing and translating steps of our analysis technique and
produces input for the model checker� To determine if
we could verify interesting properties of existing sys�
tem requirements� we use our new notation and tool to
analyze requirements for two well�known small prob�
lems� In addition to performing successful veri�ca�
tions of safety and timing properties of these systems�
we compare our reachability graphs and formulas with
those of the Modechart veri�er ��
�� a model checker for
Real�Time Logic 	RTL
 ��� which is based on interval
semantics�

�This work was supported by the O�ce of Naval Research
under Contract N���������K����� and by the Air Force O�ce
of Scienti�c Research under Contract AFOSR �������	

� SCR�CTL Methodology

This section brie�y describes Software Cost Reduction
	SCR
 requirements speci�cations and the Computa�
tional Tree Logic 	CTL
 model checker and shows how
they can be combined to specify and analyze behav�
ioral and timing requirements� A more formal presenta�
tion of the combined SCR�CTL methodology appears
in �
� ���
System speci�cation� SCR requirements were de�

veloped by a research group at the Naval Research
Laboratory as part of a general Software Cost Reduc�
tion project ��� �� ��� An SCR requirements document
speci�es a system�s behavior as a �nite set of event�
driven� state�transition machines that execute concur�
rently� Each machine i is a tuple hMi�Ki� SatE	C
� �ii�

� Mi is a �nite set of states� The states are called
modes� so named because they represent the sys�
tem�s di�erent modes of operation� The set of
modes associated with a particular machine is
called a modeclass� and the name of the modeclass
is used to refer to the machine� All of a system�s
modeclasses are �nite and mutually disjoint�

� Ki � Mi is the set of initial modes� Each mode�
class has at least one initial mode� which is speci�
�ed by the initial conditions of the system�

� SatE	C
 is the input alphabet for all the sys�
tem�s machines� C is a set of monitored variables
	boolean conditions
 that represent the system�s
environment�� and SatE	C
 is the set of satis�able
events over set C� An event is a change in the en�
vironmental state� Event �T	A
 occurs when en�
vironmental condition A becomes true� and event
�F	A
 occurs when A becomes false� The occur�
rence of an event can depend on the values of other
environmental conditions� event �T	A
 WHEN
�B� occurs if A becomes true while B is true� that
is� the event occurs at time t if A is false and B is
true at time t��� and A and B are both true at time
t� A is the triggering condition and B is the when

�Although conditions are boolean
 �rst�order predicate con�
ditions that can be represented by a �nite number of boolean
conditions �such as integer ranges� are also expressible	

�

Monitor:

Gate−Controller:

Current Mode New Mode

Approach
BC
Crossing
Passed

BC
Crossing
Passed
Approach@T

−
−
− @T

−
−

−
−

−
−

−
−
−

−

−

@F
@T

Approaching Train TrainXing

t

t

Current Mode New Mode

Down
MoveUp

Up

MoveDown Down

Up

MoveDown

MoveDown

−

−

−

−

@T

−

−

−

−

−

−

−

−

−

−

−

Gate
Up

In
(P

as
se

d)

Gate
Dow

n

In
(B

C)

@T − − −

− − −
− −−

@T − − −

−−

t f

f

Initial Mode: Approach (~Train)

Initial Mode: Up

Relationships:

GateDown −>> ~GateUp

In(BC,299) In(Passed,99)

In
(M

ov
eU

p,1
9)

In
(M

ov
eD

ow
n,1

9)

In
(M

ov
eD

ow
n,5

0)

In
(M

ov
eU

p,1
00

)

−− −− −
−@T

@T −− MoveUp

@T− −− −− t f
@T−−

Approaching | Train | TrainXing

Table �� SCR requirements speci�cation of the railroad crossing system�

condition� The input alphabet of the machines is
the set of satis�able events SatE	C
 over C� where
an event is satis�able if the conjunction of its trig�
gering and when conditions is logically satis�able
and is logically consistent with all declared con�
straints on the values of environmental conditions�
	The declared constraints are described below�

� �i � 	Mi � SatE	C
 �Mi
 is the machine�s tran�
sition relation� A mode transition occurs between
modes in the samemodeclass as a result of an event
occurrence� Mode transitions are instantaneous
and occur the at the same time as their respec�
tive transition events�

� The model of time is discrete�

Informally� each modeclass describes one aspect of the
system�s behavior� and the global behavior of the entire
system is de�ned by the composition of all the system�s
modeclasses� The system is in exactly one mode of each
modeclass at all times�
SCR requirements have a tabular format that is in�

tuitive� easy to write and change� and scalable to large
systems 	e�g�� the software requirements for the A�
aircraft ���
� Table � is a requirements speci�cation
for the classic railroad crossing problem� The speci�
�cation consists of two modeclasses� The MONITOR

modeclass monitors the location of the train and parti�
tions all possible locations into four equivalence classes�
Approach� BC 	Before Crossing
� Crossing� and
Passed� The GATE�CONTROLLER controls the po�
sition of the railroad crossing gate based on the train�s
location� the modes represent the gate�s possible posi�
tions� Up� MoveDown� Down� MoveUp�

The initial modes of the system are Approach and
Up� assuming that the initial environmental conditions
satisfy predicate �Train� the system is not de�ned if a
train is initially present� Each row in the table speci�es
an event causing a transition from the mode on the left
to the mode on the right� Each column in the center of
the table represents an environmental condition� A ta�
ble entry containing an upper�case letter 	��T� or ��F�

signi�es the condition is a triggering condition of the
transition event� the condition must change value 	to
true or false� respective
 to activate the mode transi�
tion� A table entry containing a lower�case letter 	�t� or
�f�
 signi�es the condition is a when condition of the
transition event� the condition must have a particu�
lar value 	true or false� respectively
 both immediately
before and at the time of the event occurrence� If a
condition is neither a triggering condition nor a when
condition of a transition event� then the corresponding

table entry is marked with a hyphen 	���
� For exam�
ple if the railroad crossing MONITOR is in mode Ap�
proach and a train is detected �T	Train
� then the
MONITOR transitions into mode BC�
We adapted van Schouwen�s Inmode	
 and Drtn	

functions ���� to represent state and timing constraints
as boolean �environmental� conditions� A state con�
dition speci�es whether or not the system is in a par�
ticular mode� A timing condition speci�es whether or
not the system has been in a particular mode for a par�
ticular length of time� We express delay constraints
as timing conditions in when clauses� the when con�
dition In�BC����� in the second row of the MONI�
TOR modeclass ensures that the transition fromBC to
Crossing is delayed until the system has been in mode
BC for
�� time units� Deadline constraints are ex�
pressed as negated timing conditions in when clauses�
when condition �In�MoveDown���� in the second row
of the GATE�CONTROLLER modeclass ensures that
the �rst transition fromMoveDown to Down cannot
occur if the system has been in mode MoveDown for
more than �� time units� Hard deadlines are speci�ed
as unconditional events� for example� transition event
�T	In�MoveDown����
 of the second transition from
MoveDown to Down speci�es that the system must
exit modeMoveDown within �� time units of entering
the mode�

We have built an analysis tool� tcart �
� ��� that
transforms an SCR requirements speci�cation into a
format that can be formally analyzed� First� the
SCR requirements must be detailed with missing 	but
known
 information concerning the values of system
conditions� To enhance readability of SCR require�
ments� events reference the least number of environ�
mental conditions that need to be monitored to detect
the event� In the railroad crossing example� an event
triggered by the gate being lowered 	�T	GateDown

must depend on GateUp being false� though this may
not be an explicit when condition of the event� Like�
wise� at most one of the conditions representing the
train�s location 	Approaching� Train� and TrainXing

can be true at any time� The syntax and semantics
of the relationship speci�cations are described in �
��
for the purposes of this paper� relation j denotes an
enumeration and relation ��� denotes a type of impli�
cation� tcart accepts a list of condition relationships
and details the mode transition tables with additional
triggering and when conditions that explicate these
relationships� In our machine mode� an event e is not
satis�able 	e �� SatE	C

 if it violates any of the listed
condition relationships�
Second� tcart derives all possible sequences of si�

multaneous mode transitions and explicitly adds these
sequences to the transition relations �i as �new� mode
transitions� A simultaneous mode transition occurs if a

transition is enabled at the time its source mode is en�
tered� the enabled transition is immediately activated
and the system e�ectively spends no time in the transi�
tion�s source mode� For each sequence of simultaneous
mode transitions� tcart creates a new transition from
the source mode of the sequence�s �rst transition to the
destination mode of the last transition� the transition
event of the new compound transition is the conjunc�
tion of all the sequence�s transition events� If a mode�
class contains a cycle of mode transitions that can occur
simultaneously� an error message is issued�

If the speci�cation consists of multiple concurrent
modeclasses� then the next phase composes the mod�
eclasses into a single global speci�cation� A node
in the global speci�cation 	called a global mode
 rep�
resents several current modes� one mode from each
modeclass� Starting with the set of possible initial
global modes� the composition algorithm determines
whether the mode transitions leaving the component
modes of the reachable global modes lead to new reach�
able global modes� The result of composing n ma�
chines is a global� event�driven� state�transition ma�
chine G � hM�K� SatE	C
��i� where

� M � 	M� � � � � �Mn
 is the set of global modes�

� K � 	K� � � � � � Kn
 is the set of initial global
modes�

� SatE	C
 is the input alphabet� and

� � � 	M� SatE	C
�M
 is the global transition
relation�

This global machine represents the system�s un�timed
reachability graph�

Fourth� tcart prunes from the global system speci�
�cation all global transitions whose timing constraints
are not satis�able� In the previous step� timing re�
quirements were ignored when constructing the sys�
tem�s reachability graph� There are �ve reasons why
a global transition�s timing constraints might never be
satis�ed�

�� The transition�s delay constraint is greater than its
deadline constraint�

� The transition�s delay constraint is greater than
the hard deadline for leaving the source global
mode�

�� The transition�s deadline constraint has already
passed when the source global mode is entered�

�� The transition�s event contains a state condition
In	A
 or timing condition In	A�t
 that must be
true� but A is not a component mode of G�

�� The transition�s event contains a state condition
In	A
 that must be false� but A is a component
mode of G�

For example if the railroad crossing system is in global
mode BC�MoveDown� then according to the sys�
tem�s untimed reachability graph� the system can either
transition into global mode Crossing�MoveDown
via transition BC�Crossing or it can transition into
BC�Down via one of the MoveDown�Down transi�
tions� However� the system can never transition from
BC�MoveDown to Crossing�MoveDown because
of the transitions� timing constraints� the component
modes BC and MoveDown are entered at the same
time 	because the only entry into MoveDown is trig�
gering by the system�s entry into BC
 and the sys�
tem must exit modeMoveDown before the delay con�
straint on transition BC�Crossing can be satis�ed�
To determine whether or not a global transition�s tim�
ing requirements are satis�able� one needs to know how
long the system has been in the component modes of
the transition�s source global mode 	at the time the sys�
tem enters the transition�s source global mode
� At the
same time� the calculation of how long the system has
been in a global mode�s component modes is based on
which global transitions into that global mode are sat�
is�able� Therefore� the process of pruning unsatis�able
global transitions is iterative�

� Global transitions are tested to determine if their
timing constraints are satis�able with respect to
the current information on how long the source
global mode�s component modes had been active
upon entry into the source global mode�

� The timing information on how long a global
mode�s component modes had been active upon
entry into the global mode is updated based on
	�
 the set of satis�able global transitions enter�
ing that global mode� 	

 the timing constraints
of these satis�able global transitions� and 	�
 the
current timing information of their source global
modes� component modes�

The result of this phase is a global� event�driven� state�
transition machine that represents the system�s timed
reachability graph�
Finally� some of the satis�able global transitions

in the timed reachability graph have delay 	or dead�
line
 constraints of zero time units� These transi�
tions may 	or must
 be activated as soon as the sys�
tem enters their source global mode� The technique
for collapsing simultaneous global transitions is simi�
lar to the technique for representing sequences of si�
multaneous mode transitions as new compound tran�
sitions� described above in tcart�s second step� The
only di�erence is that in this phase� global transitions
with zero�time deadline constraints are removed from
the system�s global transition relation� If the rail�
road crossing system is in global modeApproach�Up�
transition Approach�BC in modeclass MONITOR

causes a simultaneous transition from Up to Move�
Down in modeclass GATE�CONTROLLER� The re�
sult is e�ectly a global transition from global modeAp�
proach�Up to global mode BC�MoveDown� tcart
creates a new global transition fromApproach�Up to
BC�MoveDown� whose transition event is �T	Train

� �T	In�BC�
� the new transition is added to the
system�s global transition relation� and intermediate
transitions Approach�Up�BC�Up and BC�Up�
BC�MoveDown are removed from the relation� If
the reachability graph contains a cycle of simultaneous
global transitions� then an error message is issued�

At this point� the requirements speci�cation is in a
detailed format that can be formally analyzed� To use
a particular analysis tool� one needs to transform the
timed reachability graph into an appropriate represen�
tation that the analysis tool will accept� tcart converts
the �nal event�driven� state�transition machine into a
Computational Tree Logic 	CTL
 machine� which can
then be analyzed with the CTL model checker� In�
formally� a CTL machine is an extended �nite state
machine� in which each state is annotated with tran�
sition conditions 	environmental conditions
 and at�
tributes 	properties distinct from environmental con�
ditions
� The values of the environmental conditions
determine which of the current state�s transitions is
enabled� If more than one transition can be enabled
simultaneously� then the CTL machine is nondetermin�
istic�

A CTL machine cannot model a system that allows
sequences of simultaneous state transitions� It is for
this reason that tcart replaces sequences of simultane�
ous transitions in the SCR speci�cation with represen�
tative compound transitions� Furthermore� a CTL ma�
chine cannot naturally model events� CTL state tran�
sitions occur based on the current state and the cur�
rent values of the environmental conditions� To model
events� two CTL states are used to represent a global
mode� a CTL mode state and a CTL exit state� The
CTL states and transitions below model SCR transition
BC�Down�Crossing�Down�

BC Down ExitBC Down

~TrainXing &
 InBC299

TrainXing &
 InBC299

The CTLmode state represents the system in the global
mode and is annotated with the names of the global
mode�s component modes 	e�g�� BC and Down
� The
CTL exit state represents the system leaving the global
mode due to the occurrence of an event� It is anno�
tated with the names of the global mode�s component
modes plus an additional state attribute Exit� to in�
dicate that the CTL state is an exit state� The transi�
tion leaving the CTL exit state 	and entering the CTL
mode state of the destination global mode
 is anno�

tated with the values of event conditions 	TrainXing
and In�BC�����
� The transition from the CTL mode
state to its exit state is annotated with the values of
the conditions immediately before the event occurrence
	when condition In�BC����� is true� but the trigger�
ing condition TrainXing is false
� The two CTL tran�
sitions together represent the event�s triggering condi�
tions changing value 	TrainXing becomes true
 while
its when conditions are satis�ed 	In�BC����� remains
true
� Multiple CTL exit states are needed to represent
the events of multiple transitions from the same global
mode�
Assertion language� A CTL machine can serve

as a temporal logic model of a system� and a model
checker can be used to test whether declarative spec�
i�cations 	phrased as temporal formulas
 hold in the
model� The declarative speci�cations are expressed as
formulas in a propositional branching time logic called
computational tree logic 	CTL
� CTL is de�ned in ����
the syntax and semantics of the operations used in this
paper are summarized below�

�� Every output proposition is an atomic CTL for�
mula�

� Every input condition is an atomic CTL formula�

�� If f and g are CTL formulas� then so are� � f �
f	g� f jg� AXf � EXf � EFf � AGf �

The symbols � 	not
� � 	and
� and j 	or
 are logical
connectives and have their usual meanings� Formula
AXf 	EXf
 means that f holds in every 	in some
 im�
mediate successor of the current state� F is the eventu�
ality operator� and EFf means that along some path�
there exists a future state in which f holds� G is the
invariance operator� and AGf means that along every
path� f holds in every state� Declarative speci�cations
are invariant� so the formulas we want to check are of
the form AGf � the other temporal operators are used
to describe the properties that should be invariant�
Some of the invariant properties that should hold in

the railroad crossing example are�
AG	Crossing � Down

AG		MoveDown � �InMoveDown��

��EX	Down

EF 	MoveDown � �InMoveDown��

The �rst formula is a safety property� It states that
if the train is in the railroad crossing� then the gate
must be down� The latter two formulas express a delay
constraint� The second formula states that the transi�
tion from MoveDown to Down cannot be activated
	next
 if the transition�s delay constraint has not been
satis�ed� The paired formula precludes the possibility
that the second formula is only vacuously true�
Model checker� The MCB model checker accepts

a CTL machine and a CTL formula� and determines
whether or not the formula holds in the machine� The

model checking algorithm determines the truth of a for�
mula F in phases� �rst processing F �s subformulas of
length one� then F �s subformulas of length two� etc��
until �nally processing the entire formula F � During
phase i� all subformulas of length i are evaluated at
each state with respect to that state�s annotated propo�
sitions� its transition conditions� and its evaluations of
subformulas of length less than i� Formula F is a prop�
erty of the system if it is evaluated true in the machine�s
initial state�

� Modechart

This section brie�y describes the Modechart speci�ca�
tion language and its veri�er� More thorough descrip�
tions of this system can found in ��� �
��
System speci�cation� Modechart is a hierarchical�

graphic� requirements language� The root mode con�
tains a set of machine modes� which represent sequen�
tial machines that execute in parallel� Each machine
mode is described by a set of lower�level modes and
transitions among those modes� Each lower�level mode
is either a primitive mode or a set of primitive modes
running in parallel� where set of primitive modes repre�
sents the set of actions that the lower�level mode must
perform� The system is always in exactly one lower�
level mode in each of the machine modes� Whenever
a non�primitive lower�level mode is entered� all of its
children begin executing� Whenever such a lower�level
mode is exited� all of its children terminate�� Transi�
tions between modes may be conditioned on the occur�
rence of events� the values of predicates� or delay and�or
deadline constraints� For example� a mode transition
from A to B might be activated by the system�s entry
into mode C 	i�e��� C
� or by the delay�deadline pair
	
����
� A transition activated by an event occurs at
the same time as the event� A transition conditioned on
delay�deadline pair 	r� d
 is enabled when at least r and
at most d time units have passed since the transition�s
source mode was entered� the transition must occur af�
ter d time units have passed� if no other transition from
the source mode has been activated�

Figure � contains a Modechart speci�cation for the
railroad crossing problem� Machine mode MONITOR
monitors the location of the train� and machine mode
GATE�CONTROLLER monitors and controls the po�
sition of the crossing gate� The lower�level modes cor�
respond to the modes used in the SCR speci�cation of
the same system� All of the transitions between modes
in the MONITOR mode are enabled by timing con�
ditions� while those in GATE�CONTROLLER are ei�

�The Modechart speci�cation language is actually less struc�
tured than the description presented here
 but the veri�er will
only accept speci�cations in the above format	

parallel
RAILROAD−CROSSING

APPROACH BC

CROSSINGPASSED

delay 100

MONITOR

serial

delay 300

(0,)

(0,)

serial

GATE−CONTROLLER

UP MOVEDOWN

DOWNMOVEUP

 −>BC

−>BC (20,50)

−>PASSED

(20,100)

Figure �� Modechart requirements speci�cation of the railroad crossing system�

ther activated by timing conditions or by mode tran�
sitions in the MONITOR� In Modechart� the GATE�
CONTROLLER transition fromMoveUp to Up is an�
notated with timing constraint 	
�����
� specifying a
transition delay of
� time units and a deadline of ���
time units� The Modechart transition from MoveUp
to MoveDown is annotated with �BC� indicating it
is activated when the MONITOR enters BC� In the
SCR speci�cation� timing conditions In�MoveUp�
��
and �In�MoveUp
��� correspond to the delay�deadline
pair 	
�����
� and state condition In�BC� corresponds
to the mode entry event �BC�

Modechart�s veri�er builds a �nite computation
graph representing a system�s state space� The com�
putation graph is the input to decision procedures that
evaluate formulas written in its assertion language�
Each node is labeled with the set of current system
modes� the current values of state variables� the set
of actions being performed� and a list of simultaneous
events� Each edge represents one di�erence between its
source node and destination node 	e�g�� a new system
mode or new variable value
�

For each node N� a set of potential successors and a
separation graph are generated� The separation graph
nodes are nodes which lie on the path from the sys�
tem�s initial node to N and N�s potential successors�
The separation graph edges are weighted to represent
timing constraints� positive weights are delays and neg�
ative weights are deadlines� A potential successor Pi is
pruned from the computation graph if the transitions
from another potential successor Pj must activate 	due
to timing constraints
 before any of Pi�s transitions are

�We subtract one time unit from each delay constraint so that
a transition annotated with aWHEN delay constraint is enabled
at the same time the Modechart delay would be enabled	

enabled� If two nodes in the computation graph have
the same label and the distances� between the nodes
and their potential successors 	and vice versa
 are iden�
tical� then the two nodes are equivalent� one of the
nodes is deleted from the graph and edges to it are
replaced by edges to the other node�
Assertion language� The Modechart veri�er has

two sets of operators which permit assertions to be writ�
ten about modes and mode entry events� respectively�
We de�ne the meanings of only the formulas used in
our case study�

An M�interval is a set of consecutive nodes in a com�
putation graph� each of which is labeled with system
modeM� The following formulas state relationships be�
tween M�intervals�

cm M� M� evaluates to true if each M��interval con�
tains a subset which represents an M
�interval�
and evaluates to false otherwise�

xm M� M� evaluates to true if there is no overlap be�
tween any M��interval and M
�interval� and eval�
uates to false otherwise�

et M� gives the minimum and maximum times the
system spends in all its M��intervals�

For example� the safety assertion we want to verify in
the railroad crossing example 	that the gate is down if
the train is in the railroad crossing
 would be expressed
as a cm formula�

cm�Crossing�Down�
M�interval formulas are only veri�able if the modes be�
ing compared cannot starve 	i�e�� there is no 	in�nite

�The distance between two points is the maximum sum of the
weights along any path from the �rst point to the second	

execution trace in which either mode does not occur
in�nitely often
�
An MN�interval is a set of consecutive nodes in a

computation graph that starts with a mode entry event
into mode M and ends with a mode entry event into
mode N� An event occurrence is denoted as an instan�
tiation of the occurrence function ���� where �	E�i
 is
the time of the ith occurrence of event E� For example�
�	�M � ��
 denotes the point in time in which the sys�
tem enters modeM for the tenth time� The second set
of formulas state relationships between MN�intervals�
One such formula is iu�

iu �M� �M� �M� �M� evaluates to true if the
xth entry into M� is followed 	eventually
 by
the xth entry into M
� the yth entry into M�
is followed by the yth entry into M�� and every
	xth
 M�M
interval is contained within some 	yth

M�M��interval�

�x	y� 	�	�M�� y
 � c� R� �	�M�� x

	�	�M�� x
� c� � �	�M
� x

	�	�M
� x
� c� R� �	�M�� y

�

where each ci must be a non�negative integer and
each Ri must be either � or ��

The safety assertion for the railroad system can also be
stated as an iu formula�

iu��Crossing� �Passed� �Down� �MoveUp�
This formula states that every Crossing�Passed in�
terval is contained within a Down�MoveUp interval�
MN�interval formulas can only be used if the formula
is preserved along every path and every cycle in the
computation tree� A formula is preserved on a compu�
tation path 	cycle
 if and only if for each MN�interval
referenced in the formula� the endpoints of that inter�
val appear an equal number of times along that path
	cycle
�
Model checker� The decision procedures for formu�

las are graph�search algorithms� For example� the de�
cision procedure for xm M� M� sequentially searches
the computation graph nodes for all M��intervals� For
each of these� recursive searches locate all subsequent
and prior M
�intervals� The distances between the en�
tries and exits of each pair of M�� and M
�intervals are
compared to determine if any of the intervals overlap�

� Case Studies

We used our timed SCR�CTL analysis tools and the
Modechart veri�er to analyze two existing require�
ments� a railroad crossing gate ���� and a nuclear rods
control system � �� The railroad crossing requirements
speci�cation used in this study was adapted to Mod�
echart in ��
�� The speci�cation for the nuclear rods

control system was originally speci�ed as a set of RTL
formulas� from these formulas we produced SCR and
Modechart requirements�
Railroad crossing� The SCR and Modechart speci�

�cations of the railroad crossing systems were displayed
previously in sections
 and �� respectively� The SCR
requirements includes a list of the relationships that
hold between environmental conditions�

Approaching j Train j TrainXing
GateDown ��� �GateUp

The �rst relationship states that the train is either far
away� near the crossing� or in the crossing� The second
relationship states that whenever the gate is down� the
gate is not up� Based on this list� tcart adds additional
triggering and when conditions to the table that ex�
plicate these relationships� For example� �GateUp is
added as awhen condition to the second row in GATE�
CONTROLLER� In addition� tcart deduces all of the
timing relationships between the state and timing con�
ditions 	e�g�� In	MoveUp����
 implies In	MoveUp���

and adds triggering and when conditions to explicit
these timing relationships�

The two modeclasses are so tightly coupled that our
CTL machine and the corresponding Modeclass com�
putation graph are almost simple cycles 	e�g�� the com�
putation graph contains �� points� only one of which
has more than a single successor
� Thus verifying this
speci�cation was quite straightforward�

The most important formula to verify was the safety
property� if the train is in the railroad crossing� then
the gate must be down� This property is expressed by
the following CTL formula�

AG	Crossing � Down

In addition� the speci�cation had several delay and
deadline constraints� among which were�

AG		MoveDown� �InMoveDown��

��EX	Down

EF 	MoveDown� �InMoveDown��

AG	InMoveDown�� � AX	Down

EF 	InMoveDown��

The �rst pair of CTL formulas express a delay con�
straint� the �rst formula states that the transition from
MoveDown to mode Down cannot be the next acti�
vated transition if its delay constraint has not been sat�
is�ed� the paired formula precludes the possibility that
the �rst formula is only vacuously true� The second
pair of CTL formulas represent a hard deadline con�
straint� if the system has been in MoveDown for ��
time units� then the next transition must enter mode
Down� the paired formula guarantees that the dead�
line can be reached� All �ve formulas were successfully
veri�ed�

The Modechart veri�er provides several operators
that can be used to express the safety property�

� cm	Crossing�Down
 states that every instance of
mode Crossing is also an instance of modeDown�

� iu	�Crossing�� Passed��Down��MoveUp

states that every interval between entering Cross�
ing and entering Passed is contained within some
interval that starts when Down is entered and ends
when MoveUp is entered�

When an iu command evaluates to true� Modechart�s
veri�er calculates the minimumseparation between the
interior and exterior intervals� In this example� the ver�
i�er �nds that the interior interval 	between�Crossing
and �Passed
 is entered at least
�� time units after
the exterior interval has been entered�

�x	y 	�	� Down� y
 �
�� �� �	� Crossing� x

	�	� Crossing� x
 � � � �	� Passed� x

	�	� Passed� x
 � � �� �	�MoveUp� y

Modechart�s et command veri�es delays and dead�
lines by determining the minimumand maximumtimes
the system spends in any mode� For example�

et	�MoveUp

calculates that whenever the system enters mode
MoveUp� it remains in the mode at least
� time units
and at most ��� time units before exiting�
Nuclear control rods� The nuclear control rod

example monitors the movement of two rods in a nu�
clear reactor� A human operator requests that a rod
be moved by pushing a button� The nuclear control
rods system then runs tests to ensure that it is safe to
move the rod� issues a request to move the rod to the
system�s Manager process� waits for permission from
the Manager to move the rod� and then moves the rod�
Timing constraints govern the movement of rods and
the frequency with which the Manager can grant re�
quests�
Each speci�cation contains three modeclasses run�

ning in parallel� modeclasses SUBSYS� and SUB�
SYS
 describe the sub�systems that operate the two
control rods and modeclass MANAGER determines
which of the sub�systems 	if any
 can move its rod�
The MANAGER modeclass consists of four modes�
MStart� Stable 	No rods moving�
� Grant�� and
Grant�� The sub�system modeclasses each have
seven modes� describing the various stages of a control
rod�s movement� The modes for modeclass SUBSYS�
are� S�Start� S�None 	waiting for a button press
�
S�Check� S�Req 	ask for permission to move rod
�
S�Wait� S�RecGrant 	receive permission to move
rod
� and S�MoveRod� Modeclass SUBSYS
 has the
same modes as modeclass SUBSYS�� pre�xed with S�

rather than S�� None of the environmental conditions
are related�

The three modeclasses are not nearly as tightly cou�
pled as the modeclasses in the railroad crossing example
were� The CTL machine representation of the nuclear
rods control system consists of ��� states and ��� tran�
sitions� The computation tree of our initial Modechart
speci�cation consisted of ���� nodes and ����� edges�
and contained a zero�time transition cycle 	which went
undetected
� We had assumed that actions R� and R

	which assign request variables req� and req
 to true

would cause delays in the sub�system cycles because ac�
tions cannot be performed in zero time units� action R�
	R

 is started when mode S�Req 	S�Req
 is entered�
and mode S�Req 	S�Req
 cannot exit until action R�
	R

 terminates� However� if the action terminates at
the same time as mode S�Req is entered 	i�e�� if zero
time units have passed since mode S�Req last exited
�
the system immediately transitions out of S�Req and
the action is not restarted� Adding a one unit time de�
lay to the transition fromMoveRod to None removed
the zero�time cycle and reduced the number of nodes
to ���� and the number of edges to ��
� ��

The RTL speci�cation included a safety property
that stated the two control rods could not move at the
same time� The CTL and Modechart veri�er formulas
that correspond to this safety assertion are

CTL� AG	� 	S�MoveRod�S
MoveRod

Modechart� xm	S�MoveRod� S
MoveRod

We veri�ed the CTL formula with the CTL model
checker within two seconds wall time� We tried to ver�
ify the xm formula� but the Modechart veri�er did not
complete its evaluation given more than
�� hours wall
timeWe do not know whether it would have terminated
if we had waited longer�

We were able to verify several other interesting in�
variants with the CTL model checker� but not with the
Modechart veri�er� Among these assertions were that
if a sub�system is moving its rod� then the Manager
must be in a mode indicating that it has granted that
sub�system permission to move its rod� and the two
sub�systems cannot both be in their respective Rec�
Grant modes simultaneously�

Using either the CTL model checker or Modechart�
we were able to verify all the delay and deadline con�
straints� The delay constraints insisted if the Manager
was in a Grant mode that it remain there for at least
�� time units� The deadline constraints were that the
Manager exit a Grant mode after �� time units� that
each sub�system must start moving its rod within �
time units of receiving permission to do so� and that

�Not all of the edges belong to the pruned computationgraph

but the veri�cation algorithms look at them all	

SUBSYSTEM 1

S1Start

S1None

S1Check

S1Req

S1Wait

S1RecGrant

S1MoveRod

(1, 1)

(deadline infinity)

Action R1:
 req1 = true

(−| R1)

(Grant1==false)

(d
ea

dl
in

e
20

)

(deadline 5)

(−>Grant1)

MANAGER

Grant1 Grant2

Action G1:
 req1 = false

Action G2:
 req2 = false

MStart

Stable

(req2)(req1)

(req2)(req1)

SUBSYSTEM 2

S2Start

S2None

S2Check

S2Req

S2Wait

S2RecGrant

S2MoveRod

Action R2:
 req2 = true

(1, 1)

(deadline infinity)

(Grant2==false)

(−| R2)

(−>Grant2)

(deadline 5)

(d
ea

dl
in

e
20

)

−

Current Mode
−
−

@T −

New ModeIn(S1Wait) In(S2Wait) In(Grant1,30) In(Grant2,30)
Stable −

−
@T

@T
−

− Grant1
Grant2

Grant1

Grant2

Stable

Stable
Grant2

Grant1

@T −−
f
t
−
−

f
t

−
−

@T
@T

Manager:

Initial Mode: Stable

SubSys1:

Done1
Current Mode New Mode

−
−

−

−

−

−

@T −
−
−

−
−

−

−

−
− −

−

−

− − −
− − −

− −

− −
−
−

@T
@T

S1None
Button1

Checked1

MakeReq1

Move1
In(Grant1)

In(Grant1,5)

In(S1MoveRod,20)

−

−
−

−
−

− − S1Check
S1Check S1Req− @T f
S1Req − @T − S1Wait
S1Wait @T S1RecGrant−
S1RecGrant S1MoveRod−

−
−
−

@T − − f
− @T

S1MoveRod S1None−
−

f
−

Initial Mode: S1None

−
f

SCR

MODECHART

(30, 30) (30, 30)

Figure
� SCR and Modechart speci�cations of the nuclear rods control system�

each sub�system could only move its rod for
� time
units�

� Conclusion

The greatest di�erence between SCR�CTL and Mod�
echart analysis is the construction of the reachability
graphs� In a CTL machine� a global SCR mode is
represented by one CTL mode state plus a CTL exit
state for each satis�able global transition leaving the
global mode� Imprecise 	but accurate
 timing informa�
tion about how long a global mode�s component modes
have been active is used to construct the reachability
graph� but this information is absent from the �nal rep�
resentative CTL machine� As a result� arbitrary formu�
las about time cannot be veri�ed using a CTL machine
representation�
In a Modechart computation graph� the precise

length of time a global mode�s component modes have
been active is always known because a di�erent graph
node is used to represent each equivalence class of pos�
sibilities� If one component mode can be active for
up to ��� time units and another component mode
can also be active for up to ��� time units� the global
mode could be represented by up to ������ computa�
tion graph nodes� As a result� the size of the compu�
tation graph explodes whenever the system consists of
loosely coupled machines�
Also� each edge in a Modechart computation graph

represents a single event� Sequences of simultaneous
events are represented by paths that are traversed in
zero time units� In a CTL machine� such zero�time
paths are collapsed into a single compound transition
which represents many state changes� tcart detects the
existence of zero�time cycles in the speci�cation and is�
sues appropriate error messages� The Modechart veri�
�er does not yet support this capability�
Since information about how long each component

mode has been active is retained in the Modechart com�
putation graph� time bounds can be computed� For
example� formula et�M� gives the minimum and max�
imum times the system spends in mode M� However�
a mode�s minimum and maximum times are bounded
by the delay and deadline constraints on its transitions�
and SCR�CTL analysis can verify a mode�s delays and
deadlines� In our experiments� this capability was suf�
�cient�

The greatest di!culty with the SCR�CTL analysis
technique involves the construction of the CTL formu�
las to be checked� One of the strengths of the Mod�
echart veri�er is the compact representation of its as�
sertion language� The main purpose of this language is
to restrict the type of RTL formulas one can input to
the veri�er� A similar front�end could be constructed

for the CTL model checker that would ease the phras�
ing of CTL formulas to be veri�ed�

Another strength of the Modechart speci�cation lan�
guage is that one can specify persistent state variables
and actions to be performed upon mode entry� How�
ever� since the veri�cation formulas can only reference
modes and mode entry events� no analysis can be per�
formed on the values of variables or the status of ac�
tions� Furthermore� each computation graph node is
annotated with current values of the state variables and
the currently activated actions� this further increases
the size of the computation graph without increasing
the power of the veri�er� Most importantly� there is a
problem with the semantics of Modechart that allows
a state variable to be both true and false in the same
time instant 	in di�erent nodes along a zero�time path
�

The greatest di!culty with using the Modechart ver�
i�er is that it is too easy to write speci�cations that
cannot be veri�ed� cm� um� and et formulas can only
be veri�ed if modes referenced by these formulas cannot
starve 	which is possible in speci�cations having in�nite
deadlines on transitions
� Interval formulas such as iu
can only be veri�ed if the mode intervals referenced by
the formula are preserved along every path and every
cycle in the computation graph� An interval formula is
not preserved if the beginning endpoint of an interval
occurs before a cycle and the ending endpoint of the
interval occurs within the cycle� The use of unique ini�
tial modes 	that are never entered again
 helps avoid
unpreserved formulas� but this is not a theorem�

The other major problem we had using the Mod�
echart veri�er was the response time� On small exam�
ples like the railroad crossing system� the response time
was negligible� Also� the veri�er responded quickly
when calculating timing properties of the nuclear rods
control system� However� we were not able to eval�
uate M�interval and MN�interval formulas� It is not
known whether the veri�cation routines contain an in��
nite loop or are simply computationally expensive� We
should also note that all of our experiments were run
using versions of the Modechart veri�er that were avail�
able in November ���
 and February ����� A new ver�
sion of the veri�er was released in March ����� but
there was not time to evaluate it for this publication�

The most important lesson learned from these ex�
periments is that a real�time analysis tool is not always
needed to analyze real�time systems� All safety and
timing properties one wanted to verify in the railroad
crossing and nuclear rods examples could be veri�ed
using the CTL model checker� More work needs to be
done to determine additional real�time properties that
require more powerful veri�ers�

References

��� T� Alspaugh� S� Faulk� K� Britton� R� Parker�
D� Parnas� and J� Shore� Software Requirements
for the A��E Aircraft� Technical report� Naval Re�
search Laboratory� March �� �

�
� J� Atlee� Automated Analysis of Software Require�
ments� PhD thesis� Department of Computer Sci�
ence� University of Maryland� ���
�

��� J� Atlee and J� Gannon� State�Based Model Check�
ing of Event�Driven System Requirements� 	to ap�
pear
�

��� E� Clarke� E� Emerson� and A� Sistla� �Auto�
matic Veri�cation of Finite State Concurrent Sys�
tems Using Temporal Logic Speci�cations�� ACM
Transactions on Programming Languages and Sys�
tems� 	

�
���
��� April �� ��

��� C� Heitmeyer and B� Labaw� �Consistency Checks
for SCR�Style Requirements Speci�cations�� 	in
preparation
�

��� K� Heninger� �Specifying Software Requirements
for Complex Systems� New Techniques and Their
Applications�� IEEE Transactions on Software
Engineering� SE��	�
�
��
� January �� ��

��� F� Jahanian and A� Mok� �Safety Analysis
of Timing Properties in Real�Time Systems��
IEEE Transactions on Software Engineering� SE�
�
	�
� ������� September �� ��

� � F� Jahanian and A� Mok� �A Graph�Theoretic
Approach for Timing Analysis and its Implemen�
tation�� IEEE Transactions on Computers� C�
��	
��������� August �� ��

��� F� Jahanian and D� Stuart� �A Method for Veri�
fying Properties of Modechart Speci�cations�� In
Proceedings of the Real�Time Systems Symposium�
pages �
�
�� �� �

���� N� Leveson� M� Heimdahl� H� Hildreth� and
J� Reese� �Requirements speci�cation for process�
control systems��� Technical report� Information
and Computer Science Dept�� University of Cali�
fornia� Irvine� November ���
�

���� N� Leveson and J� Stolzy� �Safety Analysis Us�
ing Petri Nets�� IEEE Transactions on Software
Engineering� SE���	�
�� ������ March �� ��

��
� D� Stuart� Implementing a veri�er for real�time
systems� In Proceedings of the Real�Time Systems
Symposium� pages �
���� �����

���� J� van Schouwen� The A�� Requirements Model�
Re�examination for Real�Time Systems and an
Application to Monitoring Systems� Techni�
cal Report TR����
��� Department of Comput�
ing and Information Science� Queen�s University�
Kingston� Ontario� May �����

	ISSTA93.Copyright
	ISSTA93

